• Title/Summary/Keyword: Courant number

Search Result 29, Processing Time 0.023 seconds

Markov Chain Model for Synthetic Generation by Classification of Daily Precipitaion Amount into Multi-State (강수계열의 상태분류에 의한 Markov 연쇄 모의발생모형)

  • Kim, Ju-Hwan;Park, Chan-Yeong
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.155-166
    • /
    • 1996
  • A finite element model for simulating gradually and rapidly varied unsteady flow in open channel is developed based on dynamic wave equation using Petrov-Galerkin method. A matrix stability analysis shows the selective damping of short wave lengths and excellent phase accuracies achived by Petrov-Galerkin method. Whereas the Preissmann scheme displays less selective damping and poor phase accuracies, and Bubnov-Galerkin method shows nondissipative characteristics whicn causes a divergence problem in short wave length. The analysis also shows that the Petrov-Galerkin method displays the desirable combination of selective damping of high frequency progressive waves over a wide range of Courant number and good phase accuracy at low Courant number. Therefore, the Petrov-Galerkin can be effectively applied to gradually and rapidly varied unsteady flow.

  • PDF

Impulse response method for a centrifugal pump in pipeline systems (원심펌프 관로계에 대한 임펄스 응답법 적용 연구)

  • Hur, Jisung;Kim, Hyunjoon;Song, Yongsuk;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.481-489
    • /
    • 2016
  • Method of characteristic(MOC) has been widely used as a transient analysis technique for pressurized pipeline systems. There are substantial studies using MOC for the water hammer triggered through instantaneous valve closures, pump stoppage and pump startup for pipelines systems equipped with a centrifugal pump. Considering restrictions of MOC associated with courant number condition for complicated pipeline systems, an impulse response method(IRM) was developed in the frequency domain. this study implements the impact of centrifugal pump using transfer function in frequency domain approach. Using pump performance curve and the affinity law, this study formulated transfer functions which relate complex pressure head at upstream of pump system to that of downstream location. Simulations of simple reservoir-pump-valve system using IRM with formulated transfer function were similar to those obtained through MOC.

A Study on Spatial Distributions of Courant Number and Numerical Efficiency of LTS Method in Calculation of Ship Resistance Using Structured and Unstructured Meshes (정렬 및 비정렬 격자를 이용한 선박 저항 계산에서 Courant 수의 공간 분포 및 LTS 기법의 효율성에 관한 연구)

  • Lee, Sang Bong;Paik, Kwang-Jun;Park, Dong Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.83-89
    • /
    • 2017
  • Numerical simulations of ship resistance have been performed to compare spatial characteristics of Courant number when using structured and unstructured meshes. When Euler scheme was used for time integration, the structured mesh provided a more efficient calculation because the calculation time interval was larger than that of unstructured mesh. The automatic generation of very small meshes in the unstructured mesh was mainly responsible for the limitation of calculation time interval. When local time stepping Euler scheme was applied, however, the ship resistance of unstructured mesh showed a rapid convergence while a slow convergence of ship resistance in structured mesh was caused by the small time interval in bulbous bow.

An Eulerian-Lagrangian Hybrid Numerical Method for the Longitudinal Dispersion Equation (Eulerian-Lagrangian 혼합모형에 의한 종확산 방정식의 수치해법)

  • 전경수;이길성
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.137-148
    • /
    • 1993
  • A hybrid finite difference method for the longitudinal dispersion equation was developed. The method is based on combining the Holly-Preissmann scheme with the fifth-degree Hermite interpolating polynomial and the generalized Crank-Nicholson scheme. Longitudinal dispersion of an instantaneously-loaded pollutant source was simulated by the model and other characteristics-based numerical methods. Computational results were compared with the exact solution. The present method was free from wiggles regardless of the Courant number, and exactly reproduced the location of the peak concentration. Overall accuracy of the computation increased for smaller value of the weighting factor, $\theta$ of the model. Larger values of $\theta$ overestimated the peak concentration. Smaller Courant number gave better accuracy, in general, but the sensitivity was very low, especially when the value of $\theta$ was small. From comparisons with the hybrid method using the third-degree interpolating polynomial and with split-operator methods, the present method showed the best performance in reproducing the exact solution as the advection becomes more dominant.

  • PDF

Numerical Analysis for Advection Equation Based on the Method of Moments (모멘트법에 의한 이송방정식의 수치해석)

  • Baek, Jung-Cheol;Jo, Won-Cheol;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.99-110
    • /
    • 1999
  • The method of moments, a Lagrangian scheme, considers the zeroth, first, and second moments of the grid cell spatial distributions of the concentration and then advects the concentration by maintaining conservation of the moments. The reasonable inital description of the first and second moments as well as the mean concentration, the zeroth moments, in grid element is important in the method of moments. In this study, the description methods of each initial moment are reviewed, and the method of moments is extended to overcome the restrictions of Courant number. Its performance is compared with those of available Eulerian and Lagrangian schemes. As the results, the method is successfully extended to overcome the stability restriction and is an accurate scheme for the advection simulation of concentration distribution, especially of which the gradient is steep. In addition, the method is very promising scheme in terms of computational efficiency when the mixing is confined in a relatively small region to the entire domain in two-dimensional problem.

  • PDF

Eulerian-Lagrangian Hybrid Numerical Method for the Longitudinal Dispersion Equation

  • Jun, Kyung-Soo;Lee, Kil-Seong
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.85-97
    • /
    • 1994
  • A hybrid finite difference method for the longitudinal dispersion equation, which is based on combining the Holly-Preissmann scheme with fifth-degree Hermite interpolating polynomial and the generalized Crank-Nicholson scheme, is described and comparatively evaluated with other characteristics-based numerical methods. Longitudinal dispersion of an instantaneously-loaded pollutant source is simulated, and computational results are compared with the exact solution. The present method is free from wiggles regardless of the Courant number, and exactly reproduces the location of the peak concentration. Overall accuracy of the computation increases for smaller value of the weighting factor, $\theta$of the model. Larger values of $\theta$ overestimates the peak concentration. Smaller Courant number yields better accuracy, in general, but the sensitivity is very low, especially when the value of $\theta$ is small. From comparisons with the hybrid method using cubic interpolating polynomial and with splitoperator methods, the present method shows the best performance in reproducing the exact solution as the advection becomes more dominant.

  • PDF

Atomistic analysis of nano/micro biosensors

  • Chen, James;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.111-121
    • /
    • 2010
  • Dynamic analysis of nano/micro bio-sensors based on a multiscale atomistic/continuum theory is introduced. We use a generalized atomistic finite element method (GAFEM) to analyze a bio-sensor which has $3{\times}N_a{\times}N_p$ degrees of freedom, where $N_p$ is the number of representative unit cells and $N_a$ is the number of atoms per unit cell. The stiffness matrix is derived from interatomic potential between pairs of atoms. This work contains two studies: (1) the resonance analysis of nano bio-sensors with different amount of target analyte and (2) the dependence of resonance frequency on finite element mesh. We also examine the Courant-Friedrichs-Lewy (CFL) condition based on the highest resonance frequency. The CFL condition is the criterion for the time step used in the dynamic analysis by GAFEM. Our studies can be utilized to predict the performance of micro/nano bio-sensors from atomistic perspective.

Effect of Change of Numerical Parameters on Outflow Characteristics in the Linear Muskingum-Cunge Method (선형 Muskingum-Cunge 법에서의 수치적 인자의 변화가 유출특성에 미치는 영향)

  • 김진수
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.139-150
    • /
    • 1996
  • This paper presents the effect of numerical parameters, such as grid size and grid ratio, on the outflow hydrograph of a unit-width plane in the linear Muskingum-Cunge method. The numerical results depend on Courant number C and cell Reynolds number D, two physically and numerically meaningful parameters. As C approache 1 and D increases, the numerical dispersion-relating oscillations are difficult to occur. The numerical oscillations occur in the front of a propagating wave for C < 1, while smaller oscillations occur behind the wave for C > 1 due to the numerical diffusion effect. For a plane with a small value of characteristic reach length L (e.g., a steep plane), the numerical solution of the Muskingum-Cunge method is similar to that of the kinematic wave method, which shows no wave attenuation. However, for a plane with a large value of L (e.g., a mild plane), the Muskingum-Cunge method leads to the diffusion waves which are essentially independent of the Courant number. Accordingly, the Muskingum-Cunge method will be suited for the routing of the catchment with relatively mild slopes.

  • PDF

An Imprevement of the Approximate-Factorization Scheme and Its Application to the Analysis of Incompressible Viscous Flows (근사인자화법의 개량과 비압축성 유동해석에의 응용)

  • 신병록
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1950-1963
    • /
    • 1995
  • A modification of the approximate-factorization method is made to accelerate the convergency rate and to take sufficiently large Courant number without loss of accuracy. And a stable implicit finite-difference scheme for solving the incompressible Navier-Stokes equations employed above modified method is developed. In the present implicit scheme, the volume fluxes with contravariant velocity components and the pressure formulation in curvilinear coordinates is adopted. In order to satisfy the continuity condition completely and to remove spurious errors for the pressure, the Navier-Stokes equations are solved by a modified SMAC scheme using a staggered gird. The upstream-difference scheme such as the QUICK scheme is also employed to the right hand side. The implicit scheme is unconditionally stable and satisfies a diagonally dominant condition for scalar diagonal linear systems of implicit operator on the left hand side. Numerical results for some test calculations of the two-dimensional flow in a square cavity and over a backward-facing step are obtained using both usual approximate-factorization method and the modified one, and compared with each other. It is shown that the present scheme allows a sufficiently large Courant number of O(10$^{2}$) and reduces the computing time.

Numerical Simulation of Dam Break Flow using EFDC Model and Parameter Sensitivity Analysis (EFDC 모형을 이용한 댐 붕괴류 수치모의 및 매개변수 민감도 분석)

  • Jang, Chul;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a series of numerical simulation of dam break flow was conducted using EFDC model, and input conditions including cell size, time step, and turbulent eddy viscosity were considered to analyze parameter sensitivity. In case of coarse mesh layout, the propagated length of the shock wave front was ${\Delta}_x$ longer than that of other mesh layouts, and the velocity results showed jagged edge, which can be cured by applying fine grid mesh. Turbulent eddy viscosity influenced magnitude of the maximum velocity passing through gate up to 20% and the cell Peclet number less than 2.0 ensured no numerical oscillations.