• Title/Summary/Keyword: Crack Growth Rate

Search Result 588, Processing Time 0.028 seconds

Effects of Fillers on Fatigue Crack Growth Rate of Ethylene Propylene Diene Monomer (충전제가 EPDM의 피로균열 성장속도에 미치는 영향)

  • Hong, Chang-Kook;Jung, Jae-Yeon;Cho, Dong-Lyun;Kaang, Shin-Young
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.270-275
    • /
    • 2008
  • Crack growth characteristics of elastomeric materials are an important factor determining the strength and durability. In this study, the fatigue crack growth characteristic of filled EPDM compounds with different reinforcing fillers, such as silica and carbon black, was investigated using a newly designed tester. Frequency and test temperature had significant effects on the fatigue crack growth. The crack growth rate decreased with increasing frequency and the rate increased with increasing temperature. A power law relationship between the tearing energy and crack growth was observed for filled EPDM compounds. The crack growth rate reduced with increasing filler contents. Silica filled EPDM showed a better fatigue resistance than carbon black filled EPDM. The crack growth rate of silica filled EPDM decreased up to 30 phr and increased again at 50 phr. The formation of microductile type pits was observed on the fatigue-failure surface of unfilled EPDM, and relatively coarse surface with randomly distributed tear lines was observed on the failure surface of silica filled EPDM.

Surface crack growth behaviors of 304 stainless steel at elevated temperatures (304 스테인리스 鋼의 高溫에서의 表面균열 成長特性에 관한 硏究)

  • 서창민;신형섭;권영태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.355-361
    • /
    • 1987
  • Creep and fatigue tests were carried out on crack growth properties of small surface cracks in 304 stainless steel at 538.deg.C, 593.deg. C and 650.deg. C in air, by using small plate specimens with a small artificial pit. All the data of the crack growth rate per hour obtained in the present tests were correlated with the maximum stress intensity factor, so that the applicability of linear fracture mechanics to the crack growth of surface cracks at elevated temperature was investigated. In the creep test, relatiion of .sigma.$\^$n/.t$\_$f/=C is obtained between failure time and nominal stress at each temperature level, where n has the value of 11-14 depending on the temperature level. In the creep and fatigue crack growth properties of surface cracks at the elevated temperatures, the maximum stress intensity factor, $_{4}$$\_$max/, is some extent applicable parameter to describe the surface crack growth rate under the present experimental conditions. The crack growth rate per hour increases when the holding time decreases, and creep crack growth rate per hour becomes the lowest limit of crack growth rate per hour in this tests.

Fatigue Crack Propagation Characteristics in HAZ of A106 Gr B Steel Pipe Weldments (A106 Gr B강 배관용접부의 잔류응력해석 및 피로균열성장특성)

  • 김철한;배동호;김복기;조선영;홍정균;이범노
    • Proceedings of the KWS Conference
    • /
    • 1999.05a
    • /
    • pp.237-240
    • /
    • 1999
  • In this study, residual stresses of the weldment were calculated by finite element analysis(FEA) and experiment. And, the crack closure behaviour and fatigue crack growth characteristics in field of residual stress of A106 Gr B steel pipe weldment were investigated under various stress ratio. Obtained results are as follows. I) $K_{op}$ was independent of $K_{max}$, and load ratio in fatigue crack growth. 2) In variation of load ratio, the scatter band of crack growth curve was reduced by half considering crack closure. and 3) Neglecting crack closure behaviour, actual fatigue crack growth rate can be underestimated' and Actual fatigue crack growth rate can be overestimated by $K_{res}$, in tensile residual stress field.

  • PDF

Fatigue Crack Growth Analysis of Steel Deckplates Under Bending Stress (휨응력을 받는 바닥강판의 피로균열진전해석)

  • Choi, Jun Hyeok;Kyung, Kab Soo;Choi, Dong Ho;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.409-416
    • /
    • 1999
  • The fatigue crack growth analysis based on the fracture mechanics is useful to the estimation of the fatigue life on welded structures under cyclic loading. The analysis procedure in fatigue crack growth under uniform axial loading is applicable to bending fatigue problem as well. The intent of the present study is to show the procedure for calculating the fatigue crack propagation lifetimes of deckplates under bending stress and to explain the crack growth rates for the two dimensional crack problems. It is shown that the fatigue crack grows at a decreasing rate and the fatigue life depends on the initial crack length and the crack shape. The numerically predicted crack growth agree with the experimental data.

  • PDF

Stress Corrosion Cracking in the Pre-Cracked Specimens of Type 403 Stainless Steel

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-19
    • /
    • 2004
  • Crack growth rate and threshold stress intensity factor for stress corrosion cracking(SCC), $K_{ISCC}$ were measured for type 403 stainless steel in 3,5% NaCl solution at room temperature and SCC was monitored by electrochemical noise technique during $K_{ISCC}$ testing. In rising load test, pits were formed at the tip of pre-crack for the pre-cracked compact tension specimen unlike in smooth round specimen in which only unstable pits were observed and hence immune to SCC. Micro-cracks were found to initiate from the pits in the former specimen, and initiation of micro-crack as well as macro-crack was detected by electrochemical noise technique in rising load $K_{ISCC}$ tests. Crack growth rate increased with increasing either displacement rate or stress intensity factor at crack initiation and was higher in rising load $K_{ISCC}$ test compared to constant load $K_{ISCC}$ test at given stress intensities.

Analysis of Fatigue Crack Growth with Thickness Ratio in Weldments (두께比를 考廬한 鎔接部의 疲勞龜裂傳播 解釋)

  • 차용훈;방한서;김덕중
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.69-77
    • /
    • 1996
  • This study aims to analyze the S. I. F. K value upon Mode I cracks in a finite-width plate of varying thickness, which is expressed in terms of width ratio ($\omega$), thickness ratio ($\beta$) and non-dimensional crack length (λ) by using the 2-dimensional finite element method. Then, by comparing the effectiveness of the results obtained by the two finite element methods, it is seen that the 2-dimensional finite element method can be used in order to analyse the S. I. F. K values upon a various thickness model. A model is developed in order to analyze the effects of initial residual stress upon the fatigue crack growth behavior in various thickness welded specimens. In this model, crack growth rate da/dN appears to be come small as the thickness ratio with the same ΔK is increased. Also, in the initial step, as ΔK is increased with crack growth rate is decreased and then increased because the repeated compressive residual stress retards crack growth rate.

  • PDF

Creep Crack Growth Properties of Low Pressure Turbine Rotor Steel under Constant Load and Ct

  • Jeong, Soon-Uk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.95-101
    • /
    • 2002
  • The propagation rate(da/dt) prediction parameter and the microstructure properties of creep crack in domestic 3.3NiCrMov steel were investigated at 550$\^{C}$ by using 0.5" CT specimen under constant load(4090N) and constant Ct(300∼4000N/mhr) condition that was maintained during crack growth of 1mm distance. C* usually increased with crack length though load was reduced in order to maintain constant Ct value as crack growth and considerably showed the scatter band, but Ct depended on load line displacement rate and represented a good relation with da/dt. At constant toad and Ct region, crack growth slope was 0.900 and 0.844 each, in the other hand C* slope was 0.480. Fully coalesced area(FCA) ahead of crack tip was increased as Ct value increase to the critical value, and after that value FCA decreased. The average diameter ditribution of cavity in FCA showed the greatest value about 1.5 ㎛ when Ct=2000N/mhr. The increasing of Ct in FCA view point enlarged the size of damage area and the size reached to maximum 800 ㎛ when Ct=2000N/mhr.

Plastic Displacement Estimates in Creep Crack Growth Testing (크리프 균열 성장 실험을 위한 소성 변위 결정법)

  • Huh Nam-Su;Yoon Kee-Bong;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1219-1226
    • /
    • 2006
  • The ASTM test standard recommends the use of the compact tension specimen for creep crack growth rates measurement. In the creep crack growth rate test, the displacement rate due to creep is obtained by subtracting the contribution of elastic and plastic components from the total load line displacement rate based on displacement partitioning method fur determining $C^*-integral$, which involves Ramberg-Osgood (R-O) fitting procedures. This paper investigates the effect of the R-O fitting procedures on plastic displacement rate estimates in creep crack growth testing, via detailed two-dimensional and three-dimensional finite element analyses of the standard compact tension specimen. Four different R-O fitting procedures are considered; (i) fitting the entire true stress-strain data up to the ultimate tensile strength, (ii) fitting the true stress-strain data from 0.1% strain to 0.8 of the true ultimate strain, (iii) fitting the true stress-strain data only up to 5% strain, and (iv) fitting the engineering stress-strain data. It is found that the last two procedures provide reasonably accurate plastic displacement rates and thus should be recommended in creep crack growth testing. Moreover, several advantages of fitting the engineering stress-strain data over fitting the true stress-strain data only up to 5% strain are discussed.

A Statistical Analysis of Fatigue Crack Growth under Constant-Amplitude Loads (일정진폭하중하의 피로균열전파의 통계적 특성)

  • Jeong, Hyeon-Cheol;Lim, Young-Kyu;Kim, Seon-Jin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.104-109
    • /
    • 2002
  • In this paper, a statistical analysis of fatigue crack growth behavior under constant amplitude loads has been carried out. Fatigue crack growth tests were conducted on sixteen pre-cracked compact tension (CT) specimens of the pressure vessel (SPV50) steel in controlled identical load and environmental conditions. The assessment of the statistical distribution of fatigue crack growth experimental data obtained from SPV50 steel was studied and also the correlation of the parameter C and m in the Paris-Erdogan law was discussed. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Weibull. The fatigue crack growth rate seems to follow the 3-parameter Weibull and the log-normal distribution. The coefficient of variation (COV) of fatigue crack growth life was observed to decrease as the crack grows. A strong negative linear correlation exists between the coefficient C and the exponent m in Paris model. Fatigue crack growth rate data shows a normal distribution for both m and logC.

  • PDF

Probabilistic Fatigue Crack Growth Behavior under Constant Amplitude Loads (일정진폭하중하의 확률론적 피로균열전파거동)

  • Jeong, Hyeon-Cheol;Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.923-929
    • /
    • 2003
  • In this paper, an analysis of fatigue crack growth behavior from a statistical point of view has been carried out. Fatigue crack growth tests were conducted on sixteen pre-cracked compact tension (CT) specimens of the pressure vessel (SPV50) steel in controlled identical load and environmental conditions. The assessment of the statistical distribution of fatigue crack growth experimental data obtained from SPV50 steel was studied and also the correlation of the parameter C and m in the Paris-Erdogan law was discussed. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Weibull. The fatigue crack growth rate seems to follow the 3-parameter Weibull and the log-normal distribution. The coefficient of variation (COV) of fatigue crack growth life was observed to decrease as the crack grows. Fatigue crack growth rate data shows a normal distribution for both m and logC. A strong negative linear correlation exists between the coefficient C and the exponent m.