• Title/Summary/Keyword: Crack self-healing

Search Result 80, Processing Time 0.028 seconds

New maintenance method of concrete micro crack using repair stick with self-healing capability and manufacture of repair stick containing the self-healing ingredient (균열자기치유조성물을 함유한 균열보수스틱 제조 및 그를 이용한 새로운 콘크리트 미세균열 보수방법)

  • Ahn, Tae Ho;Kim, Hong Gi;Kim, Kyung Min;So, Kwang Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.111-112
    • /
    • 2014
  • This research focuses on the study that micro-crack of concrete is repaired to use self-healing technology. Self-healing concrete is widely studied in domestic and international construction field recently. Micro-crack(less than 0.3mm)of concrete is repaired using a crack repair stick which containing self-healing agents. Therefore, the crack on construction structure will be easily repaired by using a crack repair stick. Also experiment was proceeded because of evaluating the long term durability.

  • PDF

Crack-healing and durability performance of self-healing concrete with microbial admixture (미생물 혼입 자기치유 콘크리트의 균열 치유성능 및 내구성능)

  • Chu, Inyeop;Woo, Sang-Kyun;Lee, Byung-Jae;Lee, Yun;Lee, Hyo-Sub
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.295-299
    • /
    • 2021
  • Recently, interest in maintenance has been increasing due to the enlargement and aging of infra structures. Therefore, a new paradigm is required to secure and improve the durability of structures differentiated from the past. Accordingly, research on smart concrete incorporating the concept of self-healing into concrete is being actively conducted. In this study, the crack healing performance and durability performance of self-healing concrete applied with a hydrogel containing biomineral-forming microorganisms were evaluated. As a result of evaluating the dispersion of the hydrogel in concrete, it was confirmed that the hydrogel was well distributed in concrete matrix with a dispersion coefficient of 0.35 to 0.46. The crack healing performance evaluation was verified by a water permeability test, and showed a recovery rate of 95% or more at the age of 28 days, confirming the applicability of self-healing concrete. The durability performance of self-healing concrete was evaluated in terms of resistance to penetration of chloride ion and freezing and thawing. Regardless of the mixing of the hydrogel, the same level of durability performance was shown for various compressive strength level. Therefore, it was confirmed that the microbial admixture did not affect concrete durability. In the future, long-term crack healing performance and durability verification studies should be supplemented.

Influence of Exposure Environmental Conditions on the Crack Healing Performance of Self-healing Repair Mortar Specimens (노출환경 조건이 자기치유형 보수 모르타르 시험체의 균열 치유성능에 미치는 영향)

  • Lee, Woong-Jong;Lee, Hyun-Ho;Ahn, Sang-Wook;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.283-288
    • /
    • 2018
  • Since the crack self-healing materials are activated according to the exposure environmental conditions from the time of crack occurrence, it is very important to clarify the relationship between the healing performance and the exposure environmental conditions of the crack surface. In this paper, the influence of the exposure environmental conditions on the crack healing performance of self-healing repair mortar was investigated through the water permeability test. The influence of temperature and humidity on the crack width of cracked specimens was evaluated. As a result of measuring the change of the crack width, the effect of curing temperature was negligible but it was confirmed that crack-closing occurred due to the change of dry-wet condition. The healing materials produced on the crack surface of the specimens was identified as calcite minerals. Since the minerals with high density are precipitated under the influence of gravity, the healing performance is somewhat different according to the direction of the crack surface, and the healing performance was significantly improved in the wet exposure condition than the air exposure condition.

The Effect of Crack Self-Healing Hybrid Capsules Composition Ratio on the Healing Properties of Cement Composites (균열 자기치유 하이브리드캡슐 조성비에 따른 시멘트 복합재료의 치유특성에 미치는 영향)

  • Choi, Yun-Wang;Nam, Eun-Joon;Park, Jun-Ho;Oh, Sung-Rok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.335-342
    • /
    • 2022
  • In this study, self-healing hybrid capsules were prepared by mixing self-healing solid capsules and self-healing microcapsules using inorganic materials as core materials. Self-healing hybrid capsules were mixed with 3 % according to the composition ratio of 3:7, 5:5, and 7:3 based on the mass of the cement to prepare a self-healing cement composite material. The healing properties of crack self-healing hybrid capsules were evaluated through hydrostatic water permeability test and surface crack monitoring. It was found that the self-healing hybrid capsules prepared by mixing the composition ratio of the self-healing solid capsules and the self-healing microcapsules at 7:3 has a great effect on improving the crack self-healing performance.

Repair methods of water leakage cracks using crack self-healing technologies for subway tunnels (균열자기치유 기술을 적용한 지하철 터널 누수공사)

  • Ahn, Tae-Ho;Bang, Sin-Young;Kim, Jeong-Mi;Shim, Kwang-Bo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.15-16
    • /
    • 2015
  • In this research, the application of repair methods of water leakage cracks using self-healing technologies for subway tunnels is presented. In order to apply crack self-healing water stop agents and quick setting agents in subway tunnels, laboratory and field tests were performed based on various previous researches. Especially, this study focused on development of crack repair materials and their new repair methods. Therefore, various repair materials were examined for new repair materials with self-healing capability applied to crack sealing method and to patching repair method.

  • PDF

A Study on Crack Healing Properties of Cement Composites Mixed with Self-healing Microcapsules (자기치유 마이크로 캡슐을 혼합한 시멘트 복합재료의 품질 및 균열 치유 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Cheol-Gyu;Nam, Eun-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.113-121
    • /
    • 2019
  • In this study, self - healing microcapsules which can be mixed directly with cement composites were prepared, and the quality and crack healing performance of cement composites with self - healing microcapsules were evaluated. In the past, it has been focused on evaluating self-healing capsules and crack healing properties. Therefore, self - healing microcapsules have been studied for their effect on the quality of cement composites when mixed with cement composites. The table flow and the air flow rate of the cement composite material mixed with self-healing microcapsules were found to have no significant influence on table flow and air volume regardless of mixing ratio. Compressive strength and splitting tensile strength tended to decrease with increasing capsule mixing ratio. As a result of evaluation of crack healing properties according to water flow, initial water permeability decreased, and reaction products were generated over time and cracks were healed.

Self-healing and leakage performance of cracks in the wall of a reinforced concrete water tank

  • Gao, Lin;Wang, Mingzhen;Guo, Endong;Sun, Yazhen
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.727-741
    • /
    • 2019
  • A reinforced concrete water tank is a typical functional liquid storage structure and cracks are the greatest threat to the liquid storage structure. Tanks are readily cracked due to seismic activity, thereby leading to the leakage of the stored liquid and a loss of function. In order to study the effect of cracks on liquid storage tanks, self-healing and leakage tests for bending cracks and through cracks in the walls of a reinforced concrete water tank were conducted. Material performance tests were also performed. The self-healing performance of bending cracks in a lentic environment and through cracks in a lotic environment were tested, thereby the self-healing width of bending micro-cracks in the lentic environment in the short term were determined. The through cracks had the capacity for self-healing in the lotic environment was found. The leakage characteristics of the bending cracks and through cracks were tested with the actual water head on the crack. The effects on liquid leakage of the width of bending cracks, the depth of the compression zone, and the acting head were determined. The relationships between the leakage rate and time with the height of the water head were analyzed. Based on the tests, the relationships between the crack characteristics and self-healing as well as the leakage were obtained. Thereby the references for water tank structure design and grading earthquake damage were provided.

Healing Performance of Concrete Containing Hybrid Self-healing Materials (하이브리드 자기치유 소재를 혼입한 콘크리트의 치유성능)

  • Mih-ho, Hwang;Hyuk, Kwon;Hyung-Suk, Kim;Sung, Choi;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.569-576
    • /
    • 2022
  • In this study, the healing performance of hybrid self-healing concrete was investigated by mixing bacterial pellets(BP) and solid phase capsules(SC), respectively, based on organic-inorganic self-healing material(MC). Constant water head permeability test was applied as a method of evaluating the healing performance, and the healing rate and the healed crack width calculated by the equivalent crack width were used as evaluation indicies. As a result of the water permeability test, when the initial crack width was 0.3 mm, the healing rates of MC-BP and MC-SC were 2.1~3.0 %pt higher than that of MC, and the healed crack width of hybrid concrete increased by 0.017~0.018 mm. In conclusion, it was found that the self-healing performance was not significantly improved even if the two types of healing materials are used together.

Evaluation on the shrinkage crack of concrete with crack self-healing agent (균열 자기치유형 혼화재 적용 콘크리트의 수축균열 평가)

  • Hong, Seok-Beom;Yoo, Jo-Hyeong;Kim, Woo-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.82-83
    • /
    • 2014
  • Concrete with self-healing admixture can reduce the crack width by using a compound for chemical reaction with incoming water and carbon dioxide through the crack. Also, concrete with self-healing admixtures can reduce early-age shrinkage crack by using a inorganic expansive agent. In this research, we perform the basic workability test and compressive test. Also, We measure the drying shrinkage of concrete specimen. Finally, we make mock-up (3m X 3m X 0.23m) and monitor the crack width and length for 3 months.

  • PDF