• Title/Summary/Keyword: Cracking Susceptibility

Search Result 121, Processing Time 0.021 seconds

SOLIDIFICATION CRACKING SUSCEPTIBILITY OF

  • Yoon, Jong-Won
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.577-582
    • /
    • 2002
  • The solidification cracking susceptibilities of AI-Mg-Si alloy laser welds were assessed using the self-restraint tapered specimen crack test. The cracking susceptibility of 6061 and 6082 Al-Mg-Si alloy laser welds was substantially reduced when the filler wire containing high Si such as Al-12 wt.% Si (4047A) was used. The amount of eutectic was observed to affect the solidification cracking of Al-Mg-Si alloy laser welds. Abundant eutectic seems to heal the cracking and reduces the cracking susceptibility, while an initial increase in eutectic liquid leads to the increased cracking tendency.

  • PDF

Solidification Cracking Susceptibility of Al-Mg-Si Alloy Laser Welds

  • Yoon, J.W.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.42-46
    • /
    • 2002
  • The solidification cracking susceptibilities of Al-Mg-Si alloy laser welds were assessed using the self-restraint tapered specimen crack test. The cracking susceptibility of 6061 and 6082 Al-Mg-Si alloy laser welds was substantially reduced when the filler wire containing high Si such as Al-12 wt.% Si (4047A) was used. The amount of eutectic was observed to affect the solidification cracking of Al-Mg-Si alloy laser welds. Abundant eutectic seems to heal the cracking and reduces the cracking susceptibility, while an initial increase in eutectic liquid leads to the increased cracking tendency.

  • PDF

Effect of the Mg Content on the Solidification Cracking Susceptibility of the Al-Mg Alloy Laser Welds

  • Yoon, J.W.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.63-70
    • /
    • 2001
  • The solidification cracking susceptibilities of Al-Mg alloy laser welds were assessed using self-restraint tapered specimen crack test. The dependence of cracking susceptibility of Al-Mg alloy laser welds on Mg contents was observed to be similar to that of arc welds in the same materials. The cracking susceptibility of Al-Mg alloy laser welds increased as Mg content increased up to 1.6-1.9 wt.% and then it decreased as Mg content increased further. The peak cracking susceptibility occurred at around 1.6 to 1.9 wt.% Mg for both autogenous and wire feed welds. It was also observed that the cracking susceptibility decreased as the grain size of Al-Mg alloy laser welds decreased, when Mg content was in the range higher than 1.9 wt.%.

  • PDF

Cold Cracking Susceptibility in Weld Metal of High Strength-Toughness Steel (고강도 고인성강 용접금속의 저온균열 감수성에 관한 연구)

  • 이종봉;안상곤;안영호;김영우
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.46-54
    • /
    • 1995
  • The cold cracking susceptibility of a variety of weld metals deposited by GMAW with several kinds of commercial solid wires for high strength-toughness steel was investigated. G-BOP test and LB-TRC test were carried out to study the effects of preheat, chemical composition and hydrogen level on the weld metal cold cracking. The results obtained are as follows. 1) 10% CPT obtained by G-BOP test was the most valuable criteria for evaluating the cold cracking susceptibility of weld metals compared with percentage of cracking at room temperature and crack free temperature, and it had good correlation with the results of LB-TRC test. 2) Cold cracking susceptibility of weld metals was high in the row of MG100A, MG100C, MG100D and MG100B. Welds deposited with MG130 and MG80 showed similar icidents of cracking with MG100C and MG100B respectively, even though their strength levels were different. 3) Diffusible hydrogen level in weld metals which has good relation with hydrogen content in wire itself was the most critical factor for controlling the cold cracking susceptibility of weld metal.

  • PDF

A Study on Hot Cracking in Ni-Base Superalloy Welds (I) - Effect of Fe Contents on Solidification Cracking Susceptibility in Weld Metal - (Ni기 초내열합금 용접부의 고온균열에 관한 연구(I) - 용접금속의 응고균열 감수성에 미치는 Fe의 영향 -)

  • ;;Kazutoshi Nishimoto
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.614-621
    • /
    • 2001
  • A study was carried out to determine the solidification cracking susceptibility of Ni-base superalloy as a function of Fe content in base metal. Three kinds of Ni-base superalloys with three different levels of Fe content were used. The solidification cracking susceptibility was evaluated by the Trans-Varestraint test at four different strain levels. Quantitative analysis of crack revealed that the solidification crack length and the temperature range in which hot cracking occurred in fusion zone (Brittle Temperature Range, BTR) decreased with a decrease in Fe content. Further, the thermo-calc data indicated that the solidification temperature range also decreased with decreasing Fe content. From these results, it was deduced that the improvement of the solidification cracking susceptibility with decreasing Fe content was attributed to the decrease of the solidification temperature range.

  • PDF

A Study of Weld Fusion Zone Phenomena in Austenitic Stainless Steels(2) - Effects of Nitrogen on Microstructural Evolution and Hot Cracking Susceptibility GTA Welds in STS 304 - (오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(2) - STS 304 용접부 조직특성 및 고온균열 감수성에 미치는 질소의 영향 -)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • The purpose of the present study was to investigate weld metallurgical phenomena such as primary solidification mode, microstructural evolution and hot cracking susceptibility in nitrogen-bearing austenitic stainless steel GTA welds. Eight experimental heats varying nitrogen content from 0.007 to 0.23 wt.% were used in this study. Autogenous GTA welding was performed on weld coupons and the primary solidification mode and their microstructural characteristics were investigated from the fusion welds. Varestraint test was employed to evaluate the solidification cracking susceptibility of the heats and TCL(Total Crack Length) was used as cracking susceptibility index. The solidification mode shifted from primary ferrite to primary austenite with an increase in nitrogen content. Retained delta ferrite exhibited a variety of morphology as nitrogen content varied. The weld fusion zone exhibited duplex structure(austenite+ferrite) at nitrogen contents less than 0.10 wt.% but fully austenitic structure at nitrogen contents more than 0.20 wt.%. The weld fusion zone in alloys with about 0.15 wt.% nitrogen experienced primary austenite + primary ferrite solidification (mode AF) and contained delta ferrite less than 1% at room temperature. Regarding to solidification cracking susceptibility, the welds with fully austenitic structure exhibited high cracking susceptibility while those with duplex structure low susceptibility. The cracking susceptibility increased slowly with an increase in nitrogen content up to 0.20 wt.% but sharply as nitrogen content exceeded 0.20 wt.%, which was attributed to solidification mode shift fro primary ferrite to primary austenite single phase solidification.

  • PDF

Evaluation of Reheat Cracking Susceptibility with Simulated Heat Affected Zones in Cr-Mo-V Turbine Rotor Steel (CrMoV 터빈로터강에서 모의 열영향부 시험편을 이용한 재열균열 민감도평가)

  • 김광수
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.89-102
    • /
    • 1995
  • The evaluation of reheat cracking susceptibility in CrMoV turbine rotor steel was performed using thermally simulated heat affected zones. The examinations were carried out in terms of microstructural characterization, microhardness measurement and a Charpy type notch opening three point bend test. It was found that reheat cracking susceptibility increased as the peak temperature increased. This effect was due to the combined effects of the carbide dissolution and unrestricted grain growth at 1350.deg. C peak temperature. Reheat cracking susceptibility was estimated based on microhardness measurement and prior austenite grain size. It was established that for this particular material, reheat cracking in coarse grained heat affected zone can be eliminated if the microhardness is below about 360DPH and the grain size is below about 30.mu.m. It is evident that reheat cracking susceptibility can be eliminated or reduced by carefully controlling the welding parameters such that a refined structure is produced in the coarse grained heat affected zone.

  • PDF

Hot Cracking Susceptibility in Welds of High Strength Al Alloys by Using DCSP-GTAW (DCSP-GTAW에 의한 고력 Al합금의 고온균열감수성에 대한 연구)

  • Ha Ryeo-Sun;Jung Byong-Ho;Park Hwa-Soon
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.65-72
    • /
    • 2004
  • The tendency and degree of hot cracking of high strength 5083, 6N01 and 7N01 Al alloy welds by using DCSP-GTAW through modified Varestraint test and autogenous butt welding were investigated. In hot cracking test, 6N01 alloy showed the highest susceptibility to hot cracking in the weld metal and HAZ. Cracking susceptibilities generally increased with increase of solidification temperature range of the base metal and bead penetration-to-width ratio of the weld metal. The cracks in welds of the alloys vertically formed to solid-liquid interface and propagated along with columnar grain boundaries. The fracture facets of cracks showed the typical morphology of solidification crack observed as dendritic structures. Especially, in 6N01 alloy, liquation cracks which were due to elements of Si, Fe and Mg also observed in HAZ near fusion boundary. In butt welding of different Al alloys, the bead crack was mainly occurred in the welds of 6N01, 7N01 and other Al alloys together with 6N01 or 7N01. In the butt welds of 7N01, it was found that the component of Cu had an effect on the higher susceptibility to the hot cracking.

A Study of Metallurgical Phenomena in Austenitic Stainless Steel Fusion Welds (I) -Weldability of Commercial Austenitic Stainless Steels- (오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(I) - 시판 오스테나이트계 스테인리스강의 용접성 -)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.111-120
    • /
    • 1998
  • To predict and evaluate metallurgical and mechanical behavior of th welds, it is essential to understand solidification behavior and microstructural evolution experienced in the welds, neither of which follows the equilibrium phase diagram because of rapid heating and cooling conditions. Metallurgical phenomena in austenitic stainless steel fusion welds, types 304, 309S, 316L, 321 and 304N, were investigated in this study. Autogenous GTA welding was performed on weld coupons, and primary solidification mode and phase distribution were investigated from the welds. Varestraint test was employed to evaluate solidification cracking susceptibilities of the alloys. GTA weld fusion zones in type 304, 321 and 304N stainless steels experienced primary ferrite solidification while those in type 309S primary austenite solidification. Type 316L exhibited a mixed type of primary ferrite and primary austenite solidification. The primary solidification mode strongly depended on $Cr_{eq}/Ni_{eq}$ ratio. In terms of solidification cracking susceptibility, type 309S that solidified as primary austenite exhibited high cracking susceptibility while the alloys experienced primary ferrite solidification showed low cracking susceptibility. The relative ranking in solidification cracking susceptibility was type 304=type 304N < type 321 < type 316L < type 309S.

  • PDF

Solidification Cracking Behavior in Austenitic Stainless Steel Laser Welds (Part 1) - Evaluation of Solidification Cracking Susceptibility by Laser Beam Welding Varestraint Test - (오스테나이트계 스테인리스강 레이저 용접부의 응고균열 거동 (Part 1) - 레이저 용접용 Varestraint 시험 시스템을 이용한 응고균열 민감도 평가 -)

  • Chun, Eun-Joon;Lee, Su-Jin;Suh, Jeong;Kang, Namhyun;Saida, Kazuyoshi
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.54-60
    • /
    • 2016
  • In order to quantitatively evaluate the solidification cracking susceptibility in laser welds of three types of austenitic stainless steels (type 310: A mode, type 316-A: AF mode, type 316-B: FA mode solidifications), the laser beam welding (LBW) transverse-Varestraint tests consisted of multi-mode fiber laser, welding robot and hydraulic pressure system were performed. As the welding speed increased from 1.67 to 40.0 mm/s, the solidification brittle temperature range (BTR) of laser welds for type 316 stainless steels enlarged (316-A: from 37 to 46 K, 316-B: from 14 to 40 K), while the BTR for type 310 stainless steel reduced from 146 to 120 K. In other words, it founds that solidification cracking susceptibility could not be simply mitigated through application of LBW process, and the BTR variation behavior is quite different upon solidification mode of austenitic stainless steels.