• Title/Summary/Keyword: Creative engineering

Search Result 1,033, Processing Time 0.029 seconds

Creative Engineering Design Education Utilizing the Problem-solving Process and Skills of Critico(-Creative) Thinking (비판(-창의)적 사고의 문제 해결 과정과 기량을 활용한 창의 공학 설계 교육)

  • Park, Sang Tae;Kim, Jedo
    • Journal of Engineering Education Research
    • /
    • v.24 no.2
    • /
    • pp.68-75
    • /
    • 2021
  • ABEEK recommends convergent engineering projects to nurture creative problem-solving ability for 1st year engineering students through 'Creative Engineering Design' course. However, 1st year engineering students, who have not yet studied core subjects in engineering, have difficulties understanding and coping with the challenges posed by the engineering-related projects. For this reason, the educational objectives of this course are usually frustrating to achieve by the instructor. In this paper, by using the problem-solving process and skills of critico(-creative) thinking, we prepare guidelines for creative engineering design education that allow 1st-year students to effectively participate in engineering projects without a complete understanding of the design process which is to be studied. Also, we present a case study that applies the guidelines to an on-going creative engineering design course and discusses the outcomes by showing student-generated works. The results showed that the intuitive content and everyday expression of critico(-creative) thinking education enabled the instructor to effectively guide their students through the requirements of engineering projects without relying on advanced engineering design methods, and that the application of these guidelines also helped improve students' communication skills, including presentation. We show that the guidelines for creative engineering design education utilizing the problem-solving process and skills of critico(-creative) thinking is not only contributing to achieving the educational objectives of the creative engineering design course but can also be an educational paradigm that incorporates critico(-creative) thinking education into engineering education.

An Analysis on Educational Needs of Creative Engineering Design Ability of Engineering Students (공과대학생의 창의공학설계능력 교육요구도 분석)

  • Park, Shin Young;Lee, Yunso;Kim, Kyeong Eon;Kang, Seung Chan
    • Journal of Engineering Education Research
    • /
    • v.21 no.2
    • /
    • pp.7-16
    • /
    • 2018
  • The purpose of this study is to develop and implement engineering education program by drawing out the educational needs creative engineering design ability. The importance and current level of creative engineering ability were surveyed and analyzed by using 29 sub - factors of creative engineering design ability presented by Kim Dae young et al(2006). from 234 engineering students in 6 universities. As a result, students recognized that all items of creative engineering design ability were important, and their level was generally recognized. The educational needs for creative ability and creative problem solving ability was high and the educational needs for creative engineering design project was relatively low. Based on these results, it is necessary to develop an educational program to enhance creative engineering design ability by considering learner's perception and professional and industrial recognition.

Development of Basic Design Education Materials Incorporating Critico(-Creative) Thinking: Egg Drop Device Design (비판(-창의)적 사고를 접목한 기초 설계 교육 자료 개발: 계란 낙하 기구 설계)

  • Park, Sang Tae;Ku, Jin Hee
    • Journal of Engineering Education Research
    • /
    • v.25 no.6
    • /
    • pp.58-68
    • /
    • 2022
  • This paper aims to prepare basic design education materials explaining the design process of egg drop device by incorporating critico(-creative) thinking. To this end, in this paper, by utilizing the creative problem solving process and the elements and standards of critical thinking, 'the five-step creative engineering design education guidelines' have been prepared so that engineering freshmen can effectively participate in engineering design projects without major knowledge. We would like to apply them to the egg drop device design. The egg drop device design, which is experiment to make and drop a drop device that can protect an egg from breaking when it is dropped freely from high places, is an engineering design project that is widely used not only in elementary, middle and high school science events but also in engineering education courses under the name of 'stunt egg'. Perhaps the basic design education material on the egg drop device design incorporating critico(-creative) thinking in this paper will contribute to incorporating critico(-creative) thinking into engineering education, as well as to achieving the educational goals of the basic design subject.

A Study of Non-Curricula Teaching Plan Utilizing a Creative Workshop (창의 실습공간 활용을 통한 비교과 교육방안 연구)

  • Cho, In Su;Choi, Dae Woo;Park, Jun Hyub
    • Journal of Engineering Education Research
    • /
    • v.17 no.2
    • /
    • pp.25-34
    • /
    • 2014
  • The purpose of this study is to examine examples of college engineering students who utilize a creative workshop that are in line with non-curricular activity support both at a domestic and foreign learning environment. It also seeks the improvements of a non-curricular teaching plan utilizing Tongmyong University's Creative Engineering Center. To achieve the intended goal, it has carried out survey satisfaction levels targeting students who visited the Creative Engineering Center and has suggested the way for sustainable operations of a Creative workshop at Tongmyong university's Creative Engineering Center to perform the development of student projects, the securement of infrastructure and the development of equipment training program in conjunction with the University Specialization.

Development of STEAM Instructional Materials using Arduino for Creative Engineering Design Class in High Schools and Its Application (일반계고의 창의공학설계 수업을 위한 아두이노 기반 STEAM 수업자료 개발과 적용)

  • Lee, Dae-Seok;Lim, Yeong-Dae;Kim, Jinsoo
    • Journal of Engineering Education Research
    • /
    • v.23 no.1
    • /
    • pp.3-9
    • /
    • 2020
  • The purpose of the study was to develop the Arduino based STEAM instruction materials for creative engineering design class. PDIE model was used in this study. We developed a STEAM lesson plan and a STEAM lesson worksheet for a total of six sessions through the steps of preparation, development, implementation and evaluation. The validity of the instruction materials was evaluated by the 10 experts using a survey. The instruction materials were applied to the class (52 students attended) of the creative engineering designs unit in technology and home economics subject. The class satisfaction and the creative solving-problem ability were examined after the calss. The class satafacition was high as the average of 10 item was 4.57 (out of 5). The paired t-test was conducted to compare the means of the creative solving-problem ability. It was observed that 'understanding and mastery of knowledge, thought, function and skills in a specific domain', 'divergent thinking', 'critical and logical thinking' and ' motivational factors' were significantly increased after the class. The instruction materials develped in this study were successfully designed to enhance the creative solving-problem ability by designing creative tasks and to intrique the interest by adding visual and auditory stimuli with the Arduino.

A Study on the Education of Creative Engineering Design Methodology (창의적 공학설계방법론 교육에 관한 연구)

  • Lee, Kun-Sang;Kim, Kang
    • Journal of Engineering Education Research
    • /
    • v.15 no.4
    • /
    • pp.94-100
    • /
    • 2012
  • The needs for enhancing creativity in engineering design education continue to increase. Recent studies about a learning environment and learning support tools provide some new possibilities. The education of creative thinking however must begin from the change of attitude of students to creativity. The experimental results and some lessons for modification of systematic engineering design methodology to creative were reported from the course 'engineering design'.

Spike type high-transmittance external light extraction film imprinted with P(VDF-TrFE) mold with island surface structure (Island 표면구조의 P(VDF-TrFE) 몰드를 임프린트한 Spike 형태의 고투과성 외부광추출 필름)

  • Sung, Baeksang;Cho, Jae-Hyeok;Lim, Young-Ji;Gasonoo, Akpeko;Lee, Hyunah;Lee, Jangwon;Woo, Seungwan;Kim, Dongsoo;Lee, Jae-Hyun;Kim, Min-Hoi;Lee, Jonghee
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.322-329
    • /
    • 2021
  • In this study, a method for improving the light extraction efficiency of organic light emitting diodes was presented using the polymer Poly(vinylidenefluoride-co-trifluoroethylene) [P(VDF-TrFE)] having an island surface structure after annealing. Polydimethylsiloxane (PDMS) imprinted on the island-structured P(VDF-TrFE) surface has a spike structure, which improves the external light extraction efficiency aroud 20%. It was confirmed that the produced film showed a low haze characteristic of 8.2, and the Current and external quantum efficiency could be improved without pixel blur due to the excellent transmittance of 93.4%.

Development of a Creative Robot School Program for Motivating Elementary School Students

  • Jung, Seul
    • Journal of Engineering Education Research
    • /
    • v.14 no.3
    • /
    • pp.31-37
    • /
    • 2011
  • This article presents program development and analysis of a creative robot school for elementary school at the local university. The purpose of opening the creative robot school is to give motivation to children for having interests in science and engineering at their young ages. The creative robot school program is developed by using facilities of a local university to spread scientific knowledge to young children in their communities to draw their interests in science as well as an engineering field for future careers. Since the robot system is a popular subject to draw attention of children and has a relation with Mechatronics Engineering, a program related with robots is selected for educating children. College students are also involved in helping children to build robots within a given time. Experiences and self-evaluations from the previously held creative robot schools at Chungnam National University(CNU) are presented to share with.