• Title/Summary/Keyword: Cretaceous volcanic rocks

Search Result 141, Processing Time 0.033 seconds

Anisotropy of Magnetic Susceptibility of Cretaceous Volcanic Rocks in Euiseong Area (의성지역에 분포하는 백악기 화산암류에 대한 대자율 이방성연구)

  • Suk, Dongwoo;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.411-420
    • /
    • 1994
  • Euiseong sub-basin, one of three sub-basins in Kyungsang basin, consists of various sedimentary and igneous rocks of Cretaceous age. Kusandong tuff and Yucheon volcanic rocks from the sub-basin were collected for the anisotropy of magnetic susceptibility (AMS) study. Maximum directions of the AMS for Kusandong tuff and Yucheon volcanic rocks are used to detect possible source areas. Although the dispersion of the maximum directions of the AMS, mainly due to low susceptibility and/or low percent anisotropy of individual specimens, is rather large, it is possible to reveal several source areas for the volcanic rocks. Areas near the Keumseongsan and Hwasan, calderas in the study area, are identified as source areas for Yucheon volcanic rocks, while the western part of Sunamsan, another collapsed caldera in Euiseong sub-basin, is inferred to be the source area for Kusandong tuff. However, it is not possible to determine detailed source areas for groups of Yucheon volcanic rocks of different lithologies, because of poor degree of convergence of the maximum directions of the AMS results from the volcanic rocks. It is also concluded that several episodic volcanic activities centered at Keumseongsan and Hwasan calderas were responsible for the formation of Yucheon volcanic rocks in Euseong area.

  • PDF

Petrology of the Cretaceous Volcanic Rocks in the Hampyeong Area (함평지역 백악기 화산암류에 대한 암석학적 연구)

  • Cho, Dong-Hyun;Yun, Sung-Hyo;Koh, Jeong-Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.93-114
    • /
    • 2009
  • Lithological and petrochemical characteristics and tectonic setting of the Cretaceous volcanic rocks in Hampyeong area located in the southwestern part of Okchon Zone, were studied by field survey and petrochemistry of major, trace, and rare earth elements. The $SiO_2$contents of the volcanic rocks range from 50.8 to 77.2wt.%. With increasing $SiO_2$, $Al_2O_3$, $Fe_2O_3\;^T$, $TiO_2$, MnO, CaO and MgO contents decrease and $K_2O$content increase, but $Na_2O$content is scatter to the trend. According to TAS and AFM diagrams, the Cretaceous volcanic rocks are calc-alkaline series. On the discrimination diagram of $K_2O$versus $SiO_2$, the volcanic rocks belong to high-K rocks series. The trace element compositions and REE patterns of the volcanic rocks, characterized by a high LILE/HFSE ratio and enrichments in LREE, indicate that they are typical of continental margin arc calc-alkaline volcanic rocks associated with the subduction environment. The ratios of Ba/Ta and Ba/La indicate that they are associated with volcanic arc-related magmatism. The Cretaceous volcanic rocks in Hampyeong area might be located in the Eurasian continental margin, related to the Pacific type tectonic environment during the Cretaceous times.

Petrochemical Characteristics and Review on Petrogenesis on Cretaceous to Tertiary Volcanic Rocks in the Kyongsang Basin (경상분지 백악기~제3기 화산암류의 암석화학적 특징과 암석 성인 고찰)

  • Sung, Jong-Gyu;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.217-233
    • /
    • 2012
  • Major elements abundances of Cretaceous to Tertiary volcanic rocks in Kyongsang basin are similar with Southern Volcanic Zone (SVZ) in Andes. Sr, K, Rb, $Ba{\pm}Th$ abundances, which have low ionic charge, are selectively fertile, on the other hand Ta, Nb, Ce, P, Zr, Hf, Sm, Ti, Y, Yb, Sc, Cr abundances are low. K, Sr, Th show characteristic spikes and Nb show remarkable trough on trace elements spider diagram. Trace elements abundances are higher than that of Andes which is supposed to mantle sources of Kyongsang basin volcanic rocks are produced lower degree of partial melting than SVZ in Andes.

Petrology of the Cretaceous volcanic rocks in Pusan ares, Korea (부산일원에 분포하는 백악기 화산암류의 암석학적 연구(I))

  • 김진섭;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.156-166
    • /
    • 1993
  • The volcanic stratigraphy and geochemistry of the Cretaceous volcanic rocks in the southern part of the Pusan showed that the volcanic rocks of the study area consist of alternating pyroclastic rocks and andesitic lavas, apparently constituting a thick volcanic sequence of a stratovolcano. The andesitic rocks contain augite, plagioclase, and hornblende as phenocrysts. Matrix minerals are augite, magnetite, hornblende, apatite. Mafic minerals, such as chlorite, epidote, sericite, and iron oxides occur as alteration products. Dacitic volcanic breccia and rhyolitic welded ash-flow tuff locally overlie the andesitic rocks. The rocks reported in the previous studies as andesitic breccia and andesite plot in the field of basalt, basaltic andesite, andesite, dacite and rhyolite, based on their chemical compositions. The volcanic rocks of the study area belong to the calc-alkaline series, and the andesitic rocks which are predominant in the area plot to the field of orogenic andesite.

  • PDF

Age of the volcanism and deposition determined from the Cretaceous strata of the islands of Yeosu-si (여수시 도서지역의 백악기층에 나타나는 화성활동 및 퇴적시기)

  • Park, Kye-Hun;Paik, In-Sung;Huh, Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.70-78
    • /
    • 2003
  • Sado, Chudo, Mokdo, Nangdo, and Jeokgeumdo are the islands which belong to Hwajeong-myeon, Yeosu-si, Jeollanam-do and there are various kinds of volcanic rocks, volcaniclastic sedimentary rocks, and dinosaur-fossil bearing sedimentary rocks on these islands. This study is designed to constrain geologic ages of these volcanic and sedimentary rocks. K-Ar ages of these rocks indicate that the volcanism of this area occurred mainly during the period of 91.8 ${\pm}$ 3.5∼65.5 ${\pm}$ 1.3(l$\sigma$) Ma. Deposition ages of the sedimentary rocks were bracketed based on the ages of the volcanic rocks and observed field relationship between sedimentary and volcanic rocks. The oldest sedimentary deposit of the area is the volcanic pebble bearing conglomerate of the Jeokgeumdo and its deposition age is ca. 81 Ma or less. The deposition age of the Chudo shale, which belongs to stratigraphically upper sequence and bears many dinosaur footprints, is at least ca. 77 Ma. Conglomerate of the Mokdo was deposited at ca. 72∼70 Ma. The deposition age of the dinosaur fossil deposit of the Sado is at least ca. 65 Ma. All the investigated volcanic and sedimentary rocks of the Yeosu islands were formed during the late Cretaceous and dinosaurs lived until the latest Cretaceous in this area.

Petrology of the Cretaceous igneous rocks in Gadeog Island, Busan, Korea (부산 가덕도 지역 백악기 화성암류에 대한 암석학적 연구)

  • 고정선;김은희;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.47-63
    • /
    • 2004
  • This study focuses on the petrography and petrochemical characteristics of the volcanic and plutonic rocks in Gadeog island, Busan, Korea. Based on textural and mineralogical characteristics, intermediate volcanic rocks can be divided into andesitic lava flows (porphyritic and massive andesites) and andesitic pyroclastics. Felsic volcanic rocks are composed of rhyolite, rhyolitic welded tuff, and tuff breccia. Plutonic rocks are intruded rhyolite and andesitic rocks, and composed of hornblende granodiorite which contains lots of mafic magma enclaves. Volcanic rocks are composed of andesite, dacite and rhyolite having a range in SiO$_2$ from 59 to 78wt.%. The volcanic rocks belong to the calc-alkaline rock series. Plutonic rocks have a range in SiO$_2$ from 63 to 69wt.%. This compositional variations correspond to those of Cretaceous volcanic and plutonic rocks in the southeastern Gyeongsang basin. The trace element composition and rare earth element patterns of the volcanics, which are characterized by high LREE/HFSE ratios and enrichment in LREE, suggest that they are typical of calc-alkaline volcanic rocks produced in the subduction environment around continental arc. We concluded that volcanic and plutonic rocks in Gadeog Island were evolved from orogenic andesitic magma which was produced by partial melting of the mantle wedge in the subduction environment.

Petrology and Structural Geology of the Late Cretaceous Volcanic Rocks in the Northeastern Part of Yucheon Basin (유천분지(楡川盆地) 북동부(北東部) 백악기(白堊記) 화산암류(火山岩類)의 화산암석학(火山岩石學) 및 지질구조(地質構造))

  • Kim, Sang Wook;Lee, Young Gil
    • Economic and Environmental Geology
    • /
    • v.14 no.1
    • /
    • pp.35-49
    • /
    • 1981
  • The studied area is largely occupied by thick piles of the late Cretaceous volcanic rocks of the Yucheon group, which is northeastern border part of the vast volcanic region in the Yucheon basin. The Yucheon group overlies the Geoncheonri Formation and is intruded by granitic and dioritic stocks and dykes. The group can be devided into two parts; the lower is Jusasan andesitic rocks which was called as Jusasan Porphyrite Formation by Tadeiwa in 1929, and the upper is Unmunsa rhyolitic rocks. The volcanic pile consists mainly of various tuffs such as tuff breccia, lapilli tuff, coarse to fine tuff and tuffaceous sediments, and interlayered flows, which range from basaltic andesite to rhyolite in their lithology. The results of petrochemical and volcanostratigraphic studies on the Jusasan andesitic socks suggest that the volcanic rocks were derived from two cyclic evolutions of magmatic fractionation. Systematic study of 5226 joints from the area reveals two sets of steep joints striking $N20^{\circ}-40^{\circ}E$ and $N40^{\circ}-70^{\circ}W$, are dominant and coincide with the fault pattern developed in the area. Three defferent maximum principal stress axes were recognized from conjugate shear joints, which are trending east-west, north-northwest, and north-northeast.

  • PDF

K-Ar Ages for Mesozoic Volcanic Rocks in the Geumdang Island, Jeonam, Korea (전남 금당도지역에 분포하는 중생대 화산암에 대한 K-Ar 연대)

  • Kim, Myung-Gee;Kang, Ji-Won;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.329-335
    • /
    • 2013
  • Based on mineral assemblages, field occurrences, the volcanic rocks distributed in the Geumdang Island area are divided into three types: rhyolite, porphyritic rhyolite and intermediated dyke rock. In a diagram of [TAS (total alkali-silica)], rhyolites and porphyritic rhyolites belong to the rhyolite-dacite field and rhyolite field, respectively. As to the times when the rhyolite and porphyritic rhyolite rocks were formed a whole rock K-Ar age was obtained. These absolute age determinations have revealed that the former (rhyolite) has an age of 76-78 Ma and belongs to the Late Cretaceous (Campanian) and the latter (porphyritic rhyolite) is 71-72 Ma in age and thus belongs to the boundary between the Campanian and Maastrichtian. These geological ages are associated with the igneous activity of the Yuchon Group which occurred vigorously in the southern part of the Korean peninsula during the Late Cretaceous. The various geological ages of volcanic rocks distributed in the southwestern part of the peninsula and of igneous rocks found in the Cretaceous formation which contain a wide variety of minerals indicate that in this area, volcanic activities continued vigorously as a result of the collision of the Eurasian and Pacific Plates between 108-71 Ma.

Structure and physical properties of the earth crust material in the middle of Korean Peninula(3) : Petrochemical study on the volcanic rocks in notheastern area o Anmyondo (한반도 중부권 지각물질의 구조와 물성연구(3) : 안면도 북동지역에 분포한 화산암에 대한 암석화학적 연구)

  • 정지곤;김원사;송무영
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.128-137
    • /
    • 1994
  • The northeastern shore of the Anmyondo consists mainly of tuff, basalt, andesite and dacite. The K-Ar ages of the two mugearites are $89.4{\pm}2.4$ Ma and $91.9{\pm}2.3$ Ma which correspond to the middle Cretaceous age. Petrochemical reviews on the volanic rocks of the Cretaceous, Tertiary and Quaternary ages in the Korean Peninsula show that marked differences exist in chemical compositions according to the age of eruption.

  • PDF

K-Ar ages of the hydrothermal clay deposits and the surrounding igneous rocks in southwest Korea (한국 남서부의 열수점토광상과 주변암에 대한 K-Ar 연대 측정)

  • Kim In Joon;Nagao Keisuke
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.58-70
    • /
    • 1992
  • From the K-Ar age determinations for the clay deposits and their surrounded rocks in southwest Korea, the ages of the ore formation in all clay deposits fall in very narrow range from 78.1 to 81.4 Ma. K-Ar ages of clay deposits are slightly younger than those of the Cretaceous volcanic rocks (Hwangsan Formation, 81.4 to 86.4 Ma) and are slightly older than those of the Cretaceous granitic rocks (77.1 to 81.5 Ma). These results indicate that clay deposits were formed with genetical relation to late Cretaceous felsic magmatism. Weolgagsan granite, which has been previously considered to be Cretaceous, is proved to be formed its age in Jurassic (140.9 and 144.8 Ma). The close relationships of K-Ar ages between the clay deposits and Cretaceous granitic rocks suggest that the clay deposits were formed during the hydrothermal alterations caused by the thermal effects (hydrothermal circulation) of the granitic intrusions rather than by the hydrothermal activities associated with volcanic activities.

  • PDF