• Title/Summary/Keyword: Critical Inclined Angle

Search Result 30, Processing Time 0.025 seconds

Mixed-Mode Fatigue Crack Growth Behavior of Cracks in Mechanical Joints Considering Critical Inclined Angle (임계 경사각을 고려한 기계적 체결부 균열의 혼합모드 피로균열성장 거동)

  • Heo, Sung-Pil;Yang, Won-Ho;Chung, Ki-Hyun;Ryu, Myung-Hai
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.187-192
    • /
    • 2001
  • Cracks in mechanical joints is generally under mixed-mode and there is the critical inclined angle at which mode I stress intensity factor becomes maximum. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed for horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using mode I and mode II stress intensity factors obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

  • PDF

가중함수법에 의한 볼트 체결부 균열의 임계 경사각 결정에 관한 연구

  • Heo, Seong-Pil;Yang, Won-Ho;Jeong, Gi-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2344-2352
    • /
    • 2000
  • Mechanical joints such as bolted or riveted joints are widely used in mechanical components. The reliable determination of the stress intensity factors for cracks in bolted joints is needed to evaluate the safety and fatigue life of them. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions because only the stress analysis of an uncracked model is required. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses for reference loadings. Critical inclined angle that mode I stress intensity factor becomes maximum is determined and the effects of crack length and the magnitude of clearance on critical inclined angle are investigated.

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin;Jie, Jin;Zhi-hao, Jiang;Wei, Liu;Hai-dong, Liu;Rou-feng, Li;Xiang, Liu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.591-604
    • /
    • 2022
  • A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

A Study on the Fatigue Crack Growth of Cracks in Mechanical Joints (기계적 체결부 균열의 피로균열성장에 관한 연구)

  • 허성필;양원호;정기현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.187-194
    • /
    • 2002
  • It has been reported that cracks in mechanical joints is generally under mixed-mode and there is critical inclined angle at which mode I stress intensity factor becomes maximum. The crack propagates in arbitrary direction and thus the prediction of crack growth path is needed to provide against crack propagation or examine safety. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed far horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using stress intensity factor obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

An Experimental Study on the Convective Boiling in Inclined Tubes (경사진 원형관내에서의 강제대류비등 열전달에 대한 실험적 연구)

  • 이홍욱;이준식;박군철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.674-681
    • /
    • 2001
  • An experiment is conducted to investigate the effect of the inclination angle on convective boiling heat transfer of a uniformly heated tube. The test section used is a stainless steel tube with10.7mm in inner diameter. The hating length is 3m and is heated directly by an AC current. The test fluid is R-113. Experiment are carried out with mass flow rates of 300, 500 and $700\;kg/m^{2}s$, and heat fluxes varying from 5 to 65 kW/$m^2$. The inclination angles of the tube are $0^{\circ},\;5^{\circ},\;11^{\circ}\;and\;25^{\circ}$. the circumferential temperature variation at low quality region and the location of dryout at high quality region are mainly observed. Circumferential anisothermality occurring at low mass flow rate and low quality conditions is gradually reduced with the increase in the inclination angle and finally disappears at the inclination angle of $25^{\circ}$. Critical quality where dryout is initiated is seriously influenced by the inclination angle. Wall temperature after critical quality is also affected by the inclination angle.

  • PDF

Prediction of the Critical Stress for the Inclined Crack in Orthotropic Materials under Biaxial load (2축하중을 받는 직교이방성 경사균열에서 임계응력의 예측)

  • Lim, Won-Kyun;Cho, Hyung-Suk;Jeong, Woo-Kil;Lee, Ill-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1384-1391
    • /
    • 2006
  • The problem of an infinite anisotropic material with a crack inclined with respect to the principal material axes is analyzed. The material is subjected to uniform biaxial load along its boundary. It is assumed that the material is homogeneous, but anisotropic. By considering the effect of the horizontal load, the distribution of stresses at the crack tip is analyzed. The problem of predicting critical stress in anisotropic solids which is a subject of considerable practical importance is examined and the effect of load biaxiality is made explicitly. The present results based on the normal stress ratio theory show significant effects of biaxial load, crack inclination angle and fiber orientation on the critical stress. The analysis is performed for a wide range of the crack angles and biaxial loads.

Critical Stress for a Crack Inclined to Princinal Material Direction in Orthotropic Material (직방성체에서 재료주축과 경사진 균열의 임계응력)

  • Lim, Won-Kyun;Cho, Hyoung-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1021-1026
    • /
    • 2003
  • The problem of predicting the fracture strength behavior in orthotropic plate with a crack inclined with respect to the principal material axes is analyzed. Both the load to cause fracture and the crack direction of crack growth arc of interest. The theoretical results based on the normal stress ration theory show significant effects of biaxial loading and the fiber orientation on the crack growth angle and the critical stress. The additional term in the asymptotic expansion of the crack tip stress field appears to provide more accurate critical stress prediction.

  • PDF

Optimal Welding Condition for the Inclined and Skewed Fillet Joints ill the Curved Block of a Ship (I) (선박 골블록의 경사 필렛 이음부의 적정 용접조건 (I))

  • PARK JU-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.79-83
    • /
    • 2004
  • The curved blocks which compose the bow and stem of a ship contain many skewed joints that are inclined horizontally and vertically. Most of these joints have a large fitness error and are continuously changing their form and are not easily accessible. The welding position and parameter values should be appropriately set in correspondence to the shape and the inclination of the joints. The welding parameters such as current, voltage, travel speed, and melting rate, are related to each other and their values must be in a specific limited range for the sound welding. These correlations and the ranges are dependent up on the kind and size of wire, shielding gas, joint shape and fitness. To determine these relationships, extensive welding experiments were performed. The experimental data were processed using several information processing technologies. The regression method was used to determine the relationship between current voltage, and deposition rate. When a joint is inclined, the weld bead should be confined to a the limited size, inorder to avoid undercut as well as overlap due to flowing down of molten metal by gravity. The dependency of the limited weld size which is defined as the critical deposited area on various factors such as the horizontally and vertically inclined angle of the joint, skewed angle of the joint, up or down welding direction and weaving was investigated through a number of welding experiments. On the basis of this result, an ANN system was developed to estimate the critical deposited area. The ANN system consists of a 4 layer structure and uses an error back propagation learning algorithm. The estimated values of the ANN were validated using experimental values.

The wave stability of the nonparallel natural convection flows adjacent to an inclined isothermal surface submerged in water at $4degC$ ($4degC$ 물에 잠겨있는 경사진 등온 벽주위 비평행 자연대류의 파형 안정성)

  • 황영규;장명륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.644-653
    • /
    • 1991
  • A wave instability problem is formulated for natural convection flows adjacent to a inclined isothermal surface in pure water near the density extremum. It accounts for the nonparallelism of the basic flow and temperature fields. Numerical solutions of the hydrodynamic stability equations constitute a two-point boundary value problem which are accurately solved using a computer code COLSYS. Neutral stability results for Prandtl number of 11.6 are obtained for various angles of inclination of a surface in the range from-10 to 30 deg. The neutral stability curves are systematically shifted toward modified Grashof number G=0 as one proceeds from downward-facing inclined plate(.gamma.<0.deg.) to upward-facing inclined plate (.gamma.>0.deg.). Namely, an increase in the positive angle of inclination always cause the flows to be significantly more unstable. The present results are compared with the results for the parallel flow model. The nonparallel flow model has, in general, a higher critical Grashof number than does the parallel flow model. But the neutral stability curves retain their characteristic shapes.

Tool Locus Analysis of Ultra-precision Inclined Grinding (초정밀 경사축 연삭가공에서의 공구 궤적 해석)

  • Hwang, Yeon;Park, Soon-Sub;Lee, Ki-Yong;Won, Jong-Ho;Kim, Hyun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.35-40
    • /
    • 2009
  • This paper presents the geometrical analysis of an inclined ultra-precision grinding technology using simulations about grinding point locus for micro lens manufacturing. Simulation results show the relationship between radius ratios ($R_1/R_2$) and wheel center locus. Furthermore, the critical grinding wheel radius ($R_1$) can be calculated from work-piece radius ($R_2$) and inclined angle ($\theta=-45^{\circ}$). These achievements could be applied to calculate CNC data in ultra-precision grinding and give insight for wheel wear and compensation grinding.