• Title/Summary/Keyword: Cross Governmental Dual-Pol. Radar Composite

Search Result 1, Processing Time 0.019 seconds

Application of an empirical method to improve radar rainfall estimation using cross governmental dual-pol. radars (범부처 이중편파레이더의 강우 추정 향상을 위한 경험적 방법의 적용)

  • Yoon, Jungsoo;Suk, Mi-Kyung;Nam, Kyung-Yeub;Park, Jong-Sook
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.625-634
    • /
    • 2016
  • Three leading agencies under different ministries - Korea Meteorological Administration (KMA) in the ministry of Environment, Han river control office in the Ministry of Land, Infrastructure and Transport (MOLIT) and Weather Group of ROK Air Force in the Ministry of National Defense (MND) - have been operated radars in the purpose of observing weather, hydrology and military operational weather in Korea. Eight S-band dual-pol. radars have been newly installed or replaced by these ministries over different places by 2015. However each ministry has different aims of operating radars, observation strategies, data processing algorithms, etc. Due to the differences, there is a wide level of accuracy on observed radar data as well as the composite images made of the cross governmental radar measurement. Gaining fairly high level of accuracy on radar data obtained by different agencies has been shared as a great concern by the ministries. Thus, "an agreement of harmonizing weather and hydrological radar products" was made by the three ministries in 2010. Particularly, this is very important to produce better rainfall estimation using the cross governmental radar measurement. Weather Radar Center(WRC) in KMA has been developed an empirical method using measurements observed by Yongin testbed radar. This study is aiming to examine the efficiency of the empirical method to improve the accuracies of radar rainfalls estimated from cross governmental dual-pol. radar measurements. As a result, the radar rainfalls of three radars (Baengnyeongdo, Biseulsan, and, Sobaeksan Radar) were shown improvement in accuracy (1-NE) up to 70% using data from May to October in 2015. Also, the range of the accuracies in radar rainfall estimation, which were from 30% to 60% before adjusting polarimetric variables, were decreased from 65% to 70% after adjusting polarimetric variables.