• Title/Summary/Keyword: Crown Height

Search Result 324, Processing Time 0.026 seconds

Allometry, Basal Area Growth, and Volume Equations for Quercus mongolica and Quercus variabilis in Gangwon Province of Korea

  • Choi, Jung-Kee;You, Byung-Oh;Burkhart, Harold E.
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.189-196
    • /
    • 2007
  • Allometry, basal area equations, and volume equations were developed with various tree measurement variables for the major species, Quercus mongolica and Quercus variabilis, in Korean natural hardwood forests. For allometry models, the relationships between total height-DBH, crown width-DBH, height to the widest portion of the crown-total height, and height to base of crown-total height were investigated. Multiple regression methods were used to relate annual basal area growth to tree variables of initial size (DBH, total height, crown width) and relative size (relative diameter, relative height) as well as competition measures (competition index, crown class, exposed crown area, percent exposed crown area, live crown ratio). For tree volume equations, the combined-variable and Schumacher models were fitted with DBH, total height and crown width for both species.

TROPICAL TREE MORPHOLOGY USING AIRBORNE LIDAR DATA

  • JANG, Jae-Dong;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.676-679
    • /
    • 2006
  • Mangrove crowns were delineated using active sensor LIDAR (LIght Detection And Ranging) data by a crown delineating model developed in this study. LIDAR data were acquired from airborne survey by a helicopter for the estuary of Macouria in the northeast coast of French Guiana. The canopy height image was derived from LIDAR vector data by calculating the difference between ground and non-ground data. The mangrove site in the study area was classified to three sectors by the time of mangrove settlement; Mangrove 1986, 2002 and 2003. The estimated crown of Mangrove 1986 was reliable defined for their size, number and volume because of larger crown size and bigger variation of crown height. The tree crown size of Mangrove 2002 and 2003 by the model was overestimated and the number of trees was much underestimated. The estimated crown was not for single crown but a crown group due to homogenous crown height and spatial resolution of LIDAR data. However the canopy height image derived from LIDAR data provided three-dimensional information of mangroves.

  • PDF

The Characteristics and Biomass Distribution in Crown of Larix olgensis in Northeastern China

  • Chen, Dongsheng;Li, Fengri
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.204-212
    • /
    • 2010
  • This study was performed in 22 unthinned Larix olgensis plantations in northeast China. Data were collected on 95 sample trees of different canopy positions and the diameter at breast height ($d_{1.3}$) ranged from 5.7 cm to 40.2 cm. The individual tree models for the prediction of vertical distribution of live crown, branch and needle biomass were built. Our study showed that the crown, branch and needle biomass distributions were most in the location of 60% crown length. These results were also parallel to previous crown studies. The cumulative relative biomass of live crown, branch and needle were fitted by the sigmoid shape curve and the fitting results were quite well. Meanwhile, we developed the crown ratio and width models. Tree height was the most important predictor for crown ratio model. A negative competition factor, ccf and bas which reflected the effect of suppression on a tree, reduced the crown ratio estimates. The height-diameter ratio was a significant predictor. The higher the height-diameter ratio, the higher crown ratio is. Diameter at breast height is the strongest predictor in crown width model. The models can be used for the planning of harvesting operations, for the selection of feasible harvesting methods, and for the estimation of nutrient removals of different harvesting practices.

Development of Allometry and Individual Basal Area Growth Model for Major Species in Korea (우리나라 주요수종의 Allometry와 개체목 흉고단면적 생장모델 개발)

  • Choi, Jung-Kee
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2011
  • Allometry and basal area equations were developed with various tree measurement variables for the major species; Quercus variabilis, Quercus mongolica, Pinus koraiensis and Larix leptolepis in Korea. For allometry models, the relationships between total height-DBH, crown width-DBH, height to the widest portion of the crown-total height, and height to base of crown-total height were investigated. Multiple regression methods were used to relate annual basal area growth to tree variables of initial size (DBH, total height, and crown width), relative size (relative diameter and relative height) as well as competition measures (competition index, crown class, and live crown ratio).

MEASURING CROWN PROJECTION AREA AND TREE HEIGHT USINGLIDAR

  • Kwak Doo-Ahn;Lee Woo-Kyun;Son Min-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.515-518
    • /
    • 2005
  • LiDAR(Light Detection and Ranging) with digital aerial photograph can be used to measure tree growth factors like total height, height of clear-length, dbh(diameter at breast height) and crown projection area. Delineating crown is an important process for identifying and numbering individual trees. Crown delineation can be done by watershed method to segment basin according to elevation values of DSMmax produced by LiDAR. Digital aerial photograph can be used to validate the crown projection area using LiDAR. And tree height can be acquired by image processing using window filter$(3cell\times3cell\;or\;5cell\times5cell)$ that compares grid elevation values of individual crown segmented by watershed.

  • PDF

A Study on the Changes of Vertical height in Teeth and Alveolar Bone with Age (증령에 따른 치아 및 치조골의 고경 변화에 관한 연구)

  • Se-Sook Kang;Kyung-Soo Han
    • Journal of Oral Medicine and Pain
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 1988
  • The author studied the vertical height of tooth crown and the amounts of alveolar bone resorption with age. All 84 subjects(44 male, 40female) who visited Dental hospital of Wonkwang University with no history of sever periodontal disease and no experience of periodontal surgery. 84 subject were divided into 3 groups by age, that is, group I(28-32yrs), group II(38-42yrs), and group III(48-52yrs). Informal radiogram with bite wing film(horizontal angulation : $0^{\circ}$, vertical angulation : $+5^{\circ}~+10^{\circ}$) were taken on premolar and molar area. The distances from cusp tip to cementoenamel junction (vertical height of tooth crown) and from cementoenamel junction alveolar crest(amount of alveolar bone resorption) were measured, and then recorded data from 946 teeth were statistically analysed. This study was undertaken to obtain the data for age estimation by the changes of tooth crown height and alveolar bone resorption in the point of forensic odontology. The obtained results were as follows : 1. The average crown height of mandibular right 1st. molar was 7.1mm in group I, 6.7mm in group II, and 6.6mm group III, and the average amount of alveolar bone resorption on mandibular right 1st. molar were 1.8mm in group I, 2.5mm in group II, and 3.0mm in group III. Ratio of tooth crown height to amount of alveolar bone resorption was 4.0:1 in groupI, 2.7:1 in group II, and 2.2:1 in group III, the ratio was decreased with age. 2. In comparison with upper teeth and lower teeth in ipsilateral side, the average value of tooth crown height and amount of alveolar bone resorption were slightly higher in upper arch than those in lower arch, but there was not a statistically significant difference. 3. The ratio of height of tooth crown to amount of alveolar bone resorption was decreased with age, and which depended mainly upon the change of amount of alveolar bone resorption rather than the change of tooth crown height.

  • PDF

A Study on the Proper Crown Height of GT 100,000Ton Cruise ship and DWT 100,000Ton Container ship (10만톤급 크루즈선과 컨테이너선의 적정 마루높이에 관한 연구)

  • Kim, Seungyeon;Lee, Yunsok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.157-162
    • /
    • 2018
  • The increase of risk in port due to the increase in ship size and sea level rises, the standard crown height will increase. In this study, cruise and container ships will need to raise their crown height due to the projected wind pressure areas becoming larger due to the ships' size increase. The mooring assessment was evaluated with the rise of the crown height. The cruise ship of GT 100,000 tons exceeded the permissible breaking force of the mooring line under the crown height conditions of wind speed of 30 kts when the wind direction was $45^{\circ}$ to the direction of the bow. Also, the elevation angle of the pier and mooring line was analyzed and exceeded the crown height, and it was determined that it is necessary to adjust the crown height. Container ships of DWT 100,000 tons were analyzed to exceed the limit of sway motion at the crown height and it was determined that they need to be adjusted to the minimum crown height standard.

Calculation of Tree Height and Canopy Crown from Drone Images Using Segmentation

  • Lim, Ye Seul;La, Phu Hien;Park, Jong Soo;Lee, Mi Hee;Pyeon, Mu Wook;Kim, Jee-In
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.605-614
    • /
    • 2015
  • Drone imaging, which is more cost-effective and controllable compared to airborne LiDAR, requires a low-cost camera and is used for capturing color images. From the overlapped color images, we produced two high-resolution digital surface models over different test areas. After segmentation, we performed tree identification according to the method proposed by , and computed the tree height and the canopy crown size. Compared with the field measurements, the computed results for the tree height in test area 1 (coniferous trees) were found to be accurate, while the results in test area 2 (deciduous coniferous trees) were found to be underestimated. The RMSE of the tree height was 0.84 m, and the width of the canopy crown was 1.51 m in test area 1. Further, the RMSE of the tree height was 2.45 m, and the width of the canopy crown was 1.53 m in test area 2. The experiment results validated the use of drone images for the extraction of a tree structure.

CONIFER FOREST BIOMASS ESTIMATION USING MULTI ANGLE SPECTRUM OBSERVATION

  • Kajiwara, Koji;Ono, Yuhsaku;Honda, Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.394-397
    • /
    • 2008
  • This research aimed at developing a technique for estimating the tree height using BRF (Bi-directional Reflectance Factor) through the clarification of the relation between shape of the tree crown and the tree height and the relations between the shape of the tree crown and BRF. This paper, reports the results of analyses of data acquired by field measurements done to clarify relation between crown shape and tree height.

  • PDF

A STUDY ON 3D STRUCTURE DETECTION FOR FOREST TREES USING REFLECTED SPECTRUM INFORMATION

  • Ono, Yuhsaku;Kajiwara, Koji;Honda, Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.345-348
    • /
    • 2007
  • This research aimed at developing a technique for estimating the tree height using BRF (Bi-directional Reflectance Factor) through the clarification of the relation between shape of the tree crown and the tree height and the relations between the shape of the tree crown and BRF. This paper, reports the results of analyses of data acquired by field measurements done to clarify relation between crown shape and tree height.

  • PDF