• Title/Summary/Keyword: Cryptographic Module Validation Program

Search Result 14, Processing Time 0.03 seconds

Study on Selftest Requirements in Cryptographic Module Validation Program with FIPS-OpenSSL Source Code Analysis (FIPS-OpenSSL 코드 분석을 통한 암호모듈 자가시험 보안요구사항 분석)

  • Seo, Seog Chung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.985-996
    • /
    • 2019
  • This paper analyzes the source code of FIPS-OpenSSL cryptographic module approved as FIPS cryptographic module in USA and shows how the selftest requirements are implemented as software cryptographic library with respect to pre-operational test and conditional tests. Even though FIPS-OpenSSL follows FIPS 140-2 standard, lots of security requirements are similar between FIPS 140-2 and Korean cryptographic module validation standards. Therefore, analysis from this paper contributes to help Korean cryptographic module vendors develop correct and secure selftest functions on their own cryptographic modules, which results in reducing the test period.

Modeling cryptographic algorithms validation and developing block ciphers with electronic code book for a control system at nuclear power plants

  • JunYoung Son;Taewoo Tak;Hahm Inhye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • Nuclear power plants have recognized the importance of nuclear cybersecurity. Based on regulatory guidelines and security-related standards issued by regulatory agencies around the world including IAEA, NRC, and KINAC, nuclear operating organizations and related systems manufacturing organizations, design companies, and regulatory agencies are considering methods to prepare for nuclear cybersecurity. Cryptographic algorithms have to be developed and applied in order to meet nuclear cybersecurity requirements. This paper presents methodologies for validating cryptographic algorithms that should be continuously applied at the critical control system of I&C in NPPs. Through the proposed schemes, validation programs are developed in the PLC, which is a critical system of a NPP's I&C, and the validation program is verified through simulation results. Since the development of a cryptographic algorithm validation program for critical digital systems of NPPs has not been carried out, the methodologies proposed in this paper could provide guidelines for Cryptographic Module Validation Modeling for Control Systems in NPPs. In particular, among several CMVP, specific testing techniques for ECB mode-based block ciphers are introduced with program codes and validation models.

암호 모듈 평가 프로그램(CMVP) 분석과 소개

  • 김석우;정성민;박성근;김일준
    • The Magazine of the IEIE
    • /
    • v.30 no.6
    • /
    • pp.624-637
    • /
    • 2003
  • CMVP(Cryptographic Module Validation Program) validates cryptographic modules to FIPS 140-1, 2, and other FIPS cryptography based standards. This paper gives an overview of the CMVP, cryptographic modules, cryptographic algorithms, and the applicable standards. This provides a brief overview of the security requirements that must be met by each cryptographic module that is submitted to a CMT laboratory for conformance testing and describes the Cryptographic Algorithm Testing.

  • PDF

Application of C Language Based Cryptographic Module with KCMVP in Java Environment (C언어로 개발된 검증필 암호모듈을 자바환경에서 활용하기 위한 방안)

  • Choi, Hyunduk;Lee, Jaehoon;Yi, Okyeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.398-401
    • /
    • 2014
  • Due to recent arise of cybercrime, importance of cyber security is highlighted more than ever. Korean government has been running Korea Cryptographic Module Validation Program, namely KCMVP, to validate security level of cryptographic modules for public organizations: indeed, many are achieving the validation. According to the program, operating environments for any specific cryptographic module are fixed. In other words, running validated module in other software environment is strictly prohibited. However, this paper asserts that it is possible for a C language based module to operate in Java based environment as long as the module is running on a validated environment. We expect this paper to help saving great amount of money and time for developing another cryptographic modules for the same operating environment. Also, this method will provide an idea for developing faster modules.

  • PDF

UML 2.0 Statechart based Modeling and Analysis of Finite State Model for Cryptographic Module Validation (암호모듈 검증을 위한 UML 2.0 상태도 기반의 유한상태모델 명세 및 분석)

  • Lee, Gang-soo;Jeong, Jae-Goo;Kou, Kab-seung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.4
    • /
    • pp.91-103
    • /
    • 2009
  • A cryptographic module (CM) is an implementation of various cryptographic algorithms and functions by means of hardware or software, When a CM is validated or certified under the CM validation program(CMVP), a finite state model(FSM) of the CM should be developed and provided, However, guides or methods of modeling and analysis of a FSM is not well-known, because the guide is occasionally regarded as a proprietary know-how by developers as well as verifiers of the CM. In this paper, we propose a set of guides on modeling and analysis of a FSM, which is needed for validation of a CM under CMVP, and a transition test path generation algorithm, as well as implement a simple modeling tool (CM-Statecharter). A FSM of a CM is modeled by using the Statechart of UML 2.0, Statechart, overcoming weakness of a FSM, is a formal and easy specification model for finite state modeling of a CM.

Validation Testing Tool for Light-Weight Stream Ciphers (경량 스트림 암호 구현 적합성 검증 도구)

  • Kang Ju-Sung;Shin Hyun Koo;Yi Okyeon;Hong Dowon
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.495-502
    • /
    • 2005
  • Cryptographic algorithm testing is performed to ensure that a specific algorithm implementation is implemented correctly and functions correctly. CMVP(Cryptographic Module Validation Program) of NIST in US is the well-known testing system that validates cryptographic modules to Federal Information Processing Standards (FIPS). There is no FIPS-approved stream cipher, and CMVP doesn't involve its validation testing procedure. In this paper we provide validation systems for three currently used light-weight stream ciphers: Bluetooth encryption algorithm E0, 3GPP encryption algorithm A5/3, and RC4 used for WEP and SSL/TLS Protocols. Moreover we describe our validation tools implemented by JAVA programing.

Design and Implementation of High-Speed Software Cryptographic Modules Using GPU (GPU를 활용한 고속 소프트웨어 암호모듈 설계 및 구현)

  • Song, JinGyo;An, SangWoo;Seo, Seog Chung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1279-1289
    • /
    • 2020
  • To securely protect users' sensitive information and national secrets, the importance of cryptographic modules has been emphasized. Currently, many companies and national organizations are actively using cryptographic modules. In Korea, To ensure the security of these cryptographic modules, the cryptographic module has been verified through the Korea Certificate Module Validation Program(KCMVP). Most of the domestic cryptographic modules are CPU-based software (S/W). However, CPU-based cryptographic modules are difficult to use in servers that need to process large amounts of data. In this paper, we propose an S/W cryptographic module that provides a high-speed operation using GPU. We describe the configuration and operation of the S/W cryptographic module using GPU and present the changes in the cryptographic module security requirements by using GPU. In addition, we present the performance improvement compared to the existing CPU S/W cryptographic module. The results of this paper can be used for cryptographic modules that provide cryptography in servers that manage IoT (Internet of Things) or provide cloud computing.

Analysis FIPS 140-2 DTR(Derived Test Requirement of FIPS 140-2 of CMVP(Cryptographic Module Validation Program) (암호화 모듈 평가 프로그램(CMVP) 표준인 Derived Test Requirement(DTR) of FIPS 140-2 분석)

  • 이병석;정성민;박성근;김석우;박일환
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2003.12a
    • /
    • pp.311-316
    • /
    • 2003
  • 정보통신기술의 발달로 대부분 사회의 기반구조가 사이버 사회로 전환되었고 다양한 형태의 경제사회 활동을 수행키 위해 정보보호제품의 활용이 극대화되었으며 더욱 중요시되었다. 이러한 사회흐름에 기반하여 정보보호제품의 안전한 선택 및 사용을 위한 기본적 선택기준은 검증받은 암호화 모듈을 바탕으로 하는 정보보호제품에 대한 신뢰 기관의 안전성 평가 결과일 것이다. 암호화 모듈에 대한 안전성 평가로 가장 널리 참조되는 것은 미국의 NIST(National Institute of Standards and Technology)가 수행하는 CMVP(Cryptographic Module Validation Program)이며, 세계적으로 인정받고 있다. 본 논문에서는 암호 모듈의 평가체계에 대해 설명하였으며 그 기준인 FIPS 140-2 DTR을 분석하여 향후 개발 가능한 CMVP의 안전성 평가 툴 기준에 대해 제시하였다.

  • PDF

Validation Tool of Elliptic Curves Cryptography Algorithm for the Mobile Internet (무선 환경에 적합한 타원곡선 암호 알고리즘의 검증도구)

  • Seo, Chang-Ho;Hong, Do-Won;Yun, Bo-Hyun;Kim, Seo-Kwoo;Lee, Ok-Yeon;Chung, Kyo-IL
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.569-576
    • /
    • 2004
  • Conventional researches of standard tool validating public key cryptographic algorithm have been studied for the internet environment, not for the mobile internet. It is important to develop the validation tool for establishment of interoperability and convenience of users in mobile internet. Therefore, this paper presents the validation tool of Elliptic Curie Cryptography algorithm that can test if following X9.62 technology standard specification. The validation tool can be applied all information securities using ECDSA, ECKCDSA, ECDH, etc. Moreover, we can en-hace the precision of validation through several experiments and perform the validation tool in the online environment.

Design of Validation System for a Crypto-Algorithm Implementation (암호 알고리즘 구현 적합성 평가 시스템 설계)

  • Ha, Kyeoung-Ju;Seo, Chang-Ho;Kim, Dae-Youb
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.4
    • /
    • pp.242-250
    • /
    • 2014
  • Conventional researches of standard tool validating cryptographic algorithm have been studied for the internet environment, for the mobile internet. It is important to develop the validation tool for establishment of interoperability and convenience of users in the information systems. Therefore, this paper presents the validation tool of Elliptic Curve Cryptography algorithm that can test if following X9.62 technology standard specification. The validation tool can be applied all information securities using DES, SEED, AES, SHA-1/256/384/512, RSA-OAEP V2.0, V2.1, ECDSA, ECKCDSA, ECDH, etc. Moreover, we can enhance the precision of validation through several experiments and perform the validation tool in the online environment.