• Title/Summary/Keyword: Crystal Plasticity

Search Result 113, Processing Time 0.032 seconds

Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity (결정 소성학을 이용한 반구 박판 성형공정의 전산모사)

  • Shim, J.G.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.276-281
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By calculating the Euler angles of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between the prediction using crystal plasticity and experiment shows the verification of the crystal plasticity-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity (결정 소성학을 이용한 반구 박판 성형공정 전산모사)

  • Shim, J.G.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.282-284
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By observing the texture evolution of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between crystal plasticity and experiment shows the verification of the crystal-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

  • PDF

Computer Simulation of Hemispherical Forming Process Texture-based Work hardening and Anisotropy (집합조직 기초 가공경화와 이방성에 의한 반구 성형공정의 전산 시뮬레이션)

  • Sim, J.K.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.199-202
    • /
    • 2006
  • The hardening and anisotropy based on the crystal plasticity is considered in the numerical simulation of hemispherical sheet forming process to find more realistic simulation results For calculating the yield shear stresses of each crystal, Taylor's model of the crystalline aggregate is employed. The yield stress of crystalline aggregate is computed by averaging the yield stresses of the crystal. The hardening is evaluated by using the Taylor factor and the critical resolved shear stress of the crystal. In addition, by observing the crystallographic texture and slip system, the anisotropy of the sheet is traced during the forming process. The anisotropy and hardening behaviors of the sheet found by the crystal plasticity are described better than those of obtained from the Hill's quadratic criterion based on the continuum plasticity.

  • PDF

A Study on Analysis for Bulk Forming of a Single Crystal Milli-Product (단결정 밀리 부품의 입체성형 해석에 관한 연구)

  • Lee Y. S.;Kim Y. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.245-249
    • /
    • 2001
  • This paper is concerned with numerical analyses for bulk forming of a single crystal milli-product, whose typical size ranges from a few hundreds ${\mu}m$ to a few mm. The numerical formulation invoked in this paper combines the crystal plasticity theory considering texture development and the ductile damage mechanics for growth of micro voids, since orientation development and growth of micro voids become the primary factors for bulk forming of milli-size products. As applications, milli-extrusion of a single crystal round bar and milli-rolling of a single crystal plate are simulated and the results are discussed in detail.

  • PDF

Prediction of Rolling Texture Evaolution in FCC Polycrystalline Metals Using Finite Element Method of Crystal Plasticity (결정소성 유한요소법을 이용한 FCC 다결정 금속의 압연 집합조직 예측)

  • 박성준;조재형;한흥남;오규환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.313-319
    • /
    • 1999
  • The development of deformation texture in FCC polycystalline metals during rolling was simulated by the finite element analysis using a large-deformation, elaatic-plastic, rate-dependent polycrystalline model of crystal plasticity. Different plastic anisotropy due to different orientation of each crystal makes inhomogeneous deformation. Assuming plane strain compression condition, the simulation with a high rate sensitivity resulted in main component change from Dillamore at low rate sensitivity to Brass component.

  • PDF

A framework for geometrically non-linear gradient extended crystal plasticity coupled to heat conduction and damage

  • Ekh, Magnus;Bargmann, Swantje
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.2
    • /
    • pp.171-188
    • /
    • 2016
  • Gradient enhanced theories of crystal plasticity enjoy great research interest. The focus of this work is on thermodynamically consistent modeling of grain size dependent hardening effects. In this contribution, we develop a model framework for damage coupled to gradient enhanced crystal thermoplasticity. The damage initiation is directly linked to the accumulated plastic slip. The theoretical setting is that of finite strains. Numerical results on single-crystalline metal showing the development of damage conclude the paper.

Prediction of Deformation Texture Based on a Three-Dimensional Crystal Plasticity Finite Element Method (3차원 결정소성 유한요소해석을 통한 변형 집합조직 예측)

  • Jung, K.H.;Kim, D.K.;Im, Y.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.252-257
    • /
    • 2012
  • Crystallographic texture evolution during forming processes has a significant effect on the anisotropic flow behavior of crystalline material. In this study, a crystal plasticity finite element method (CPFEM), which incorporates the crystal plasticity constitutive law into a three-dimensional finite element method, was used to investigate texture evolution of a face-centered-cubic material - an aluminum alloy. A rate-dependent polycrystalline theory was fully implemented within an in-house program, CAMPform3D. Each integration point in the element was considered to be a polycrystalline aggregate consisting of a large number of grains, and the deformation of each grain in the aggregate was assumed to be the same as the macroscopic deformation of the aggregate. The texture evolution during three different deformation modes - uniaxial tension, uniaxial compression, and plane strain compression - was investigated in terms of pole figures and compared to experimental data available in the literature.

Finite Element Analysis for Rate-Independent Crystal Plasticity Model (속도 독립성 결정소성모델의 유한요소해석)

  • Ha, Sang-Yul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.447-454
    • /
    • 2009
  • Rate-independent crystal plasticity model suffers from the non-uniqueness of activated slip systems and the determination of the shear slip rates on the active slip systems. In this paper, a time-integration algorithm which circumvents the problem of the multiplicity of the slip systems was developed and implemented into the user subroutine VUMAT of a commercial finite element program ABAQUS. The magnitude of the slip shears on the active slip systems in f.c.c Cu single crystal aligned with the specific crystallographic orientation was investigated to validate our solution procedure. Also, texture developments under various deformation modes such as simple compression, simple tension and plane strain compression were compared with the results of the rate-dependent model by using the rate-independent crystal plasticity model. The computation time employing the rate-independent model is much more reduced than the those of the rate-dependent model.

Strain Gradient Crystal Plasticity Finite Element Modeling for the Compression Behaviors of Single Crystals (단결정 압축 변형 거동의 변형구배 결정소성 유한요소해석)

  • Jung, Jae-Ho;Cho, Kyung-Mox;Choi, Yoon Suk
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.679-687
    • /
    • 2017
  • A strain-gradient crystal plasticity finite element method(SGCP-FEM) was utilized to simulate the compressive deformation behaviors of single-slip, (111)[$10{\bar{1}}$], oriented FCC single-crystal micro-pillars with two different slip-plane inclination angles, $36.3^{\circ}$ and $48.7^{\circ}$, and the simulation results were compared with those from conventional crystal plasticity finite element method(CP-FEM) simulations. For the low slip-plane inclination angle, a macroscopic diagonal shear band formed along the primary slip direction in both the CP- and SGCP-FEM simulations. However, this shear deformation was limited in the SGCP-FEM, mainly due to the increased slip resistance caused by local strain gradients, which also resulted in strain hardening in the simulated flow curves. The development of a secondly active slip system was altered in the SGCP-FEM, compared to the CP-FEM, for the low slip-plane inclination angle. The shear deformation controlled by the SGCP-FEM reduced the overall crystal rotation of the micro-pillar and limited the evolution of the primary slip system, even at 10 % compression.