• Title/Summary/Keyword: Cu cross-contamination

Search Result 6, Processing Time 0.019 seconds

Fabrication Method of High-density and High-uniformity Solder Bump without Copper Cross-contamination in Si-LSI Laboratory (실리콘 실험실에 구리 오염을 방지 할 수 있는 고밀도/고균일의 Solder Bump 형성방법)

  • 김성진;주철원;박성수;백규하;이희태;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.23-29
    • /
    • 2000
  • We demonstrate the fabrication method of high-density and high-quality solder bump solving a copper (Cu) cross-contamination in Si-LSI laboratory. The Cu cross-contamination is solved by separating solder-bump process by two steps. Former is via-formation process excluding Cu/Ti under ball metallurgy (UBM) layer sputtering in Si-LSI laboratory. Latter is electroplating process including Ti-adhesion and Cu-seed layers sputtering out of Si-LSI laboratory. Thick photoresist (PR) is achieved by a multiple coating method. After TiW/Al-electrode sputtering for electroplating and via formation in Si-LSI laboratory, Cu/Ti UBM layer is sputtered on sample. The Cu-seed layer on the PR is etched during Cu-electroplating with low-electroplating rate due to a difference in resistance of UBM layer between via bottom and PR. Therefore Cu-buffer layer can be electroplated selectively at the via bottom. After etching the Ti-adhesion layer on the PR, Sn/Pb solder layer with a composition of 60/40 is electroplated using a tin-lead electroplating bath with a metal stoichiometry of 60/40 (weight percent ratio). Scanning electron microscope image shows that the fabricated solder bump is high-uniformity and high-quality as well as symmetric mushroom shape. The solder bumps with even 40/60 $\mu\textrm{m}$ in diameter/pitch do not touch during electroplating and reflow procedures. The solder-bump process of high-uniformity and high-density with the Cu cross-contamination free in Si-LSI laboratory will be effective for electronic microwave application.

  • PDF

Influence of Metallic Contamination on Photovoltaic Characteristics of n-type Silicon Solar-cells (중금속 오염이 n형 실리콘 태양전지의 전기적 특성에 미치는 영향에 대한 연구)

  • Kim, Il-Hwan;Park, Jun-Seong;Park, Jea-Gun
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.17-20
    • /
    • 2018
  • The dependency of the photovoltaic performance of p-/n-type silicon solar-cells on the metallic contaminant type (Fe, Cu, and Ni) and concentration was investigated. The minority-carrier recombination lifetime was degraded with increasing metallic contaminant concentration, however, the degradation sensitivity of recombination lifetime was lower at n-type than p-type silicon wafer, which means n-type silicon wafer have an immunity to the effect of metallic contamination. This is because heavy metal ions with positive charge have a much larger capture cross section of electron than hole, so that reaction with electrons occurs much more easily. The power conversion efficiency of n-type solar-cells was degraded by 9.73% when metallic impurities were introduced in the silicon bulk, which is lower degradation compared to p-type solar-cells (15.61% of efficiency degradation). Therefore, n-type silicon solar-cells have a potential to achieve high efficiency of the solar-cell in the future with a merit of immunity against metal contamination.

Inactivation Activity of Bronze Alloy Yugi for Reduction of Cross-Contamination of Food-borne Pathogen in Food Processing (식품제조 환경에서 식품위해세균의 교차오염 감소를 위한 청동합금 유기의 살균효과)

  • Lee, Eun-Jin;Park, Jong-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.4
    • /
    • pp.309-313
    • /
    • 2008
  • To investigate the antibacterial activity of the traditional bronze alloy Yugi, the cultures of Salmonella spp., Escherichia coli O157, Enterobacter sakazakii, and Bacillus cereus were exposed to the metal coupons of bronze, copper, tin, and stainless steel, and the sterilizing activities were analyzed. Antibacterial efficacy of copper coupon toward S. Typhimurium, E. coli, and E. sakazakii were the highest among them and those were followed by bronze, tin, and then stainless steel in the activity order. However, there was little sterilizing activity on Gram-positive B. cereus. Minimal inhibitory concentrations of cupric ion were 25 ppm for S. Typhimurium, E. coli, and E. sakazakii, and 50 ppm for B. cereus. Yugi bronze alloy showed more rigidity and practicality in comparison with copper, and has been used in Korea. Therefore, the bronze alloy may be more effective to reduce the cross-contamination of S. Typhimurium, E. coli, and E. sakazakii than stainless steel in food processing surface.

Risk Analysis for the Harvesting Stage of Tomato Farms to Establish the Good Agriculture Practices(GAP) (GAP 모델 확립을 위한 토마토 농장 수확단계의 위해요소 조사 및 분석)

  • Lee, Chae-Won;Lee, Chi-Yeop;Heo, Rok-Won;Kim, Kyeong-Yeol;Shim, Won-Bo;Shim, Sang-In;Chung, Duck-Hwa
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.141-153
    • /
    • 2012
  • Samples collected from six tomato farms(A, B, C : soil culture, D, E, F : Nutriculture) located in Gyeongsangnam-do were tested for the analyses of biological(sanitary indications, major foodborne pathogens, fungi), chemical(heavy metals, pesticides) and physical hazards. The highest levels of total bacteria(7.5 log CFU/g) and coliforms(5.0 log CFU/g) in soil culture farms were higher than those of nutriculture farms(total bacteria: 2.5 log CFU/mL, coliforms: 0.6 log CFU/mL). In crops and personal hygiene soil culture farms showed a slightly higher contamination levels. From all farms, the levels of fungi in soil farms were higher than those of nutrient solution. In case of major pathogens, Bacillus cereus and Staphylococcus aureus were detected in all sample with the exception of nutrient solution. Meantime, Escherichia coli, Listeria monocytogenes, E.coli O157 and Salmonella spp. were not detected. For airborne bacteria, soilculture farms showed less contamination than nutriculture farms. A piece of glass and can was confirmed asphysical hazards. Heavy metal(Cd, Pb, Cu, Cr, Hg, Zn, Ni and As) and pesticide residues as chemical hazards were detected, but their levels were lower than the regulation limit. These results demonstrate that potential hazards on harvesting stage of tomato fam were exposed. Therefore, proper management is needed to prevent biological hazards due to cross-contamination, while physical and chemical hazards were in appropriate levels based on GAP criteria.

Investigation and Analysis of Hazards for Cultivation Environment to Establish the Good Agricultural Practices(GAP) of Soybean (콩 GAP 모델 확립을 위한 재배환경의 위해요소 조사 및 분석)

  • Kim, Kyeong-Yeol;Song, Jeong-Eon;Heo, Rok-Won;Lee, Won-Gyeong;Nam, Min-Ji;Kim, Jeong-Sook;Shim, Won-Bo;Gil, Jung-Gwon;Jung, Chan-Sik;Park, Keum-Yong;Chung, Duck-Hwa
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.121-132
    • /
    • 2010
  • Soybean farms in Changnyeong were selected for hazard analysis to establish the Good Agricultural Practices (GAP) model of soybean, and physical, chemical(heavy metal) and biological(sanitary indications, foodborne pathogens) hazard analysis for cultivation environment (soil, water) was carried out. First, bow which is able to be mixed in soil and water was confirmed as physical hazard. Levels (Cd:0.01~0.103, Cu:0.001~6.036, As:0.006~3.045, Hg:ND~0.041, Pb:0.003~3.952, $Cr^{+6}$:0.007~0.496, Zn:0.001~66.500, Ni:0.003~18.010) of heavy metals in soil and water were appropriate for GAP criteria. In biological hazard, APC and coliform in soil were detected at the levels of $6.0{\pm}0.3$ and $3.6{\pm}1.6$ log CFU/g, and levels of water were $3.5{\pm}0.7$ and $1.9{\pm}0.7$ log CFU/mL, while E. coli wasn't detected in all sample. However, coliform in water wasn't appropriate for criteria, and E. coli O157 was detected about 22% in some farms, so it needs ways to prevent contamination by human and animals excrements. In conclusion, it needs proper management to prevent cross-contamination of hazards although physical and chemical hazard level were appropriate for GAP criteria while biological hazard wasn't.

Hazard Analysis for the Application of Good Agricultural Practices(GAP) on Paprika During Cultivation (파프리카의 농산물우수관리제도(GAP)적용을 위한 재배단계의 위해요소 분석)

  • Nam, Min-Ji;Chung, Do-Yeong;Shim, Won-Bo;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.273-282
    • /
    • 2011
  • This study established hazards which may cause risk to human at farm during cultivation stage of paprika. Samples of plants (paprika, leaf, stem), cultivation environments (water, soil), personal hygiene (hand, glove, clothes), work utensils (carpet, basket, box) and airborne bacteria were collected from three paprika farms (A, B, C) located in Western Gyeongnam, Korea. The collected samples were assessed for biological (sanitary indications and major foodborne pathogens), chemical (heavy metals, pesticide residues) and physical hazards. In biological hazards, total bacteria and coliform were detected at the levels of 1.9~6.6 and 0.0~4.610g CFU/g, leaf, mL, hand or 100 $cm^2$, while Escherichia coli was not detected in all samples. In major pathogens, only Bacillus cereus were detected at levels of ${\leq}$ 1.5 log CFU/g, mL, hand or 100 $cm^2$, while Staphylococuus aureus, Listeria monocytogenes, E. coli O157 and Salmonella spp. were not detected in all samples. Heavy metal and pesticide residue as chemical hazards were detected at levels below the regulation limit, physical hazard factors, such as insects, pieces of metal and glasses, were also found in paprika farms. Proper management is needed to prevent biological hazards due to cross-contamination while physical and chemical hazards were appropriate GAP criteria.