• Title/Summary/Keyword: Cu electro deposition

Search Result 37, Processing Time 0.027 seconds

Electro-chemical Mechanical Deposition for Planarization of Cu Interconnect (Cu 배선의 평탄화를 위한 ECMD에 관한 연구)

  • Jeong, Sukhoon;Seo, Heondeok;Park, Boumyoung;Park, Jaehong;Park, Seungmin;Jeong, Moonki;Jeong, Haedo;Kim, Hyoungjae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.793-797
    • /
    • 2005
  • This study introduces Electro-chemical Mechanical Deposition(ECMD) lot making Cu interconnect. ECMD is a novel technique that has ability to deposit planar conductive films on non-planar substrate surfaces. Technique involves electrochemical deposition(ECD) and mechanical sweeping of the substrate surface Preferential deposition into the cavities on the substrate surface nay be achieved through two difference mechanisms. The first mechanism is more chemical and essential. It involves enhancing deposition into the cavities where mechanical sweeping does not reach. The second mechanism involves reducing deposition onto surface that is swept. In this study, we demonstrate ECMD process and characteristic. We proceeded this experiment by changing of distribution of current density on divided water area zones and use different pad types.

Effect of Heat Treatment of the Diffusion Barrier for Bus Electrode of Plasma Display by Electroless Ni-B Deposition (무전해 Ni-B 도금을 이용한 플라즈마 디스플레이 버스 전극용 확산방지막의 열처리 영향)

  • Choi Jae Woong;Hwang Gil Ho;Hong Seok Jun;Kang Sung Goon
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.552-557
    • /
    • 2004
  • Thin Ni-B films, 1 ${\mu}m$ thick, were electrolessly deposited on Cu bus electrode fabricated by electro deposition. The purpose of these films is to encapsulate Cu electrodes for preventing Cu oxidation and to serve as a diffusion barrier against copper contamination of dielectric layer in AC-plasma display panel. The layers were heat treated at $580^{\circ}C$(baking temperature of dielectric layer) with and without pre-annealing at $300^{\circ}C$($Ni_{3}B$ formation temperature) for 30 minutes. In the layer with pre-annealing, amount of Cu diffusion was lower about 5 times than that in the layer without pre-annealing. The difference of Cu concentration could be attributed to Cu diffusion before $Ni_{3}B$ formation at grain boundaries. However, the diffusion behavior of the layer with pre-annealing was similar to that of the layer without pre-annealing after $Ni_{3}B$ formation. With increasing annealing time, Cu concentration of both layers increased due to grain growth.

Characterization of the Cu-layer deposition time on Cu2ZnSnS4 (CZTS) Thin Film Solar Cells Fabricated by Electro-deposition (Cu층 증착시간에 따른 Cu2ZnSnS4 (CZTS) 박막의 특성)

  • Kim, Yoon Jin;Kim, In Young;Gang, Myeng Gil;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.16-20
    • /
    • 2016
  • $Cu_2ZnSnS_4$ (CZTS) thin films were fabricated by successive electrodeposition of layers of precursor elements followed by sulfurization of an electrodeposited Cu-Zn-Sn precursor. In order to improve quality of the CZTS films, we tried to optimize the deposition condition of absorber layers. In particular, I have conducted optimization experiments by changing the Cu-layer deposition time. The CZTS absorber layers were synthesized by different Cu-layer conditions ranging from 10 to 16 minutes. The sulfurization of Cu/Sn/Zn stacked metallic precursor thin films has been conducted in a graphite box using rapid thermal annealing (RTA). The structural, morphological, compositional, and optical properties of CZTS thin films were investigated using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and X-ray Flourescenece Spectrometry (XRF). Especially, the CZTS TFSCs exhibits the best power conversion efficiency of 4.62% with $V_{oc}$ of 570 mV, $J_{sc}$ of $18.15mA/cm^2$ and FF of 45%. As the time of deposition of the Cu-layer to increasing, the properties were confirmed to be systematically changed. And we have been discussed in detail below.

Effect of Surface Pretreatment on Film Properties Deposited by Electro-/Electroless Deposition in Cu Interconnection (반도체 구리 배선공정에서 표면 전처리가 이후 구리 전해/무전해 전착 박막에 미치는 영향)

  • Lim, Taeho;Kim, Jae Jeong
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • This study investigated the effect of surface pretreatment, which removes native Cu oxides on Cu seed layer, on subsequent Cu electro-/electroless deposition in Cu interconnection. The native Cu oxides were removed by using citric acid-based solution frequently used in Cu chemical mechanical polishing process and the selective Cu oxide removal was successfully achieved by controlling the solution composition. The characterization of electro-/electrolessly deposited Cu films after the oxide removal was then performed in terms of film resistivity, surface roughness, etc. It was observed that the lowest film resistivity and surface roughness were obtained from the substrate whose native Cu oxides were selectively removed.

Facile Chemical Growth of Cu(OH)2 Thin Film Electrodes for High Performance Supercapacitors (간단한 화학적 합성을 통한 고성능 슈퍼캐패시터용 수산화 구리 전극)

  • Patil, U.M.;Nam, Min Sik;Shinde, N.M.;Jun, Seong Chan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.175-180
    • /
    • 2015
  • A facile soft chemical synthesis route is used to grow nano-buds of copper hydroxide [$Cu(OH)_2$] thin films on stainless steel substrate[SS]. Besides different chemical methods for synthesis of $Cu(OH)_2$ nanostructure, the chemical bath deposition (CBD) is attractive for its simplicity and environment friendly condition. The structural, morphological, and electro-chemical properties of $Cu(OH)_2$ thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurement techniques. The results showed that, facile chemical synthesis route allows to form the polycrystalline, granular nano-buds of $Cu(OH)_2$ thin films. The electrochemical properties of $Cu(OH)_2$ thin films are studied in an aqueous 1 M KOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with $340Fg^{-1}$ specific capacitance. Moreover, electrochemical capacitive measurements of $Cu(OH)_2/SS$ electrode exhibit a high specific energy and power density about ${\sim}83Wh\;kg^{-1}$ and ${\sim}3.1kW\;kg^{-1}$, respectively, at $1mA\;cm^{-2}$ current density. The superior electrochemical properties of copper hydroxide ($Cu(OH)_2/SS$) electrode with nano-buds like structure mutually improves pseudocapacitive performance. This work evokes scalable chemical synthesis with the enhanced supercapacitive performance of $Cu(OH)_2/SS$ electrode in energy storage devices.

Electro-chemical Mechanical deposition for the planarization of Cu film (Cu 배선의 평탄화를 위한 ECMD에 관한 연구)

  • Jeong, Suk-Hoon;Seo, Heon-Duk;Park, Boum-Young;Lee, Hyun-Seop;Jung, Jae-Woo;Park, Jae-Hong;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.649-650
    • /
    • 2005
  • 반도체는 고집적화, 고속도화, 저전력화를 목적으로 발전하고 있다. 이를 위하여 design rule의 감소, 새로운 물질과 프로세스의 적용 등 많은 연구가 이루어지고 있으며, RC delay time을 줄이기 위한 Cu 와 저유전율 재료의 적용이 그 대표적인 예라 할 수 있다. Cu 배선은 기존의 Al 배선에 비하여 높은 전자이동 (electro-migration)과 응력 이동 (stress-migration) 저항을 가짐으로써 전기적인 성능 (electrical performance) 에서 이점을 가지고 있다. 반도체에서의 Cu 배선 구조는 평탄화된 표면 및 배선들 사이에서의 좋은 전기적인 절연성을 가져야 하며, 이는 디싱(dishing)과 에로젼(erosion)의 중요한 인자가 된다. 기존의 평탄화 공정인 Cu CMP(Chemical Mechanical Polishing)에 있어서 이러한 디싱, 에로전과 같은 결함은 선결되어져야 할 문제로 인식되고 있다. 따라서 본 연구에서는 이러한 결합들을 감소시키기 위한 새로운 평탄화 방법으로 Cu gap-filling 을 하는 동시에 평탄화된 표면을 이루는 ECMD(Electro-Chemical Mechanical Deposition) 공정의 전기적 기계적 특성을 파악하였다.

  • PDF

Syntheses of Cu-In-Ga-Se/S nano particles and inks for solar cell applications

  • Jung, Duk-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.295-295
    • /
    • 2010
  • Nanoparticles of the compound semiconductor, Cu(In, Ga)Se2 (CIGS), were synthesized in solution under ambient pressure below $100^{\circ}C$ and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption spectroscopy and energy-dispersive X-ray (EDX) analyses. These materials have chalcopyrite crystal structures and the particle sizes less than 100 nm. Synthetic conditions were studied for the crystallized CIGS nanoparticles formation to prevent from side products of Cu2Se, Cu2-xSe, and CuSe etc. The single phase CIGS nanoparticles were applied to coating of thin films photovoltaic cells. The electro deposition of CIGS thin films is also a good non-vacuum technology and under investigation. In aqueous solutions, the different chemical compositions of CIGS thin films were obtained, depending on pH, concentration of starting materials and deposition potentials. The surface morphology of the prepared CIGS thin films depends on the complexing ligands to the solutions during the electrochemical deposition.

  • PDF

A Study of Electro-Deposition for Pb-Sn-Cu Alloy System (연-주석-동계 합금속도에 관한 연구)

  • Kang, T.;Cho, C. S.;Yum, H. T.
    • Journal of the Korean institute of surface engineering
    • /
    • v.4 no.1
    • /
    • pp.16-23
    • /
    • 1971
  • In this study , fluoborte solution consisting of lead fluoborate, tin fluoborate and cupric acetate was used. By addition of small amount of Cu+= ion to the solution, the Cu content of deposition layer was almost controlled less than 5%. The amount of Cu in deposition layer was almost constant without any influence of Pb++ & Sn++ in the solution, and the amount of Pb was increased by the increase of total concentration of Pb++ +Sn++ in the solution, and the amount of Pb was increased by the increase of total concentration of Pb++ +Sn++ in the solution . Agitation of plating solution & low current density result in the increase of Cu content. Analyzing of microscopic structures and etching tests of the deposited alloy, it was believed that the alloy had a lamellar structure consisting of copper rich lamellar and lead rich layer.

  • PDF

Electro-oxidation of Cyclohexanol on a Copper Electrode Modified by Copper-dimethylglyoxime Complex Formed by Electrochemical Synthesis

  • Hasanzadeh, Mohammad.;Shadjou, Nasrin.;Saghatforoush, Lotfali.;Khalilzadeh, Balal.;Kazeman, Isa.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2943-2948
    • /
    • 2009
  • Copper-dimethylglyoxime complex (CuDMG) modified Copper electrode (Cu/CuDMG) showed a catalytic activity towards cyclohexanol oxidation in NaOH solution. The modified electrode prepared by the dimethylglyoxime anodic deposition on Cu electrode in the solution contained 0.20 M $NH_4Cl\;+\;NH_4OH\;(pH\;9.50)\;and\;1\;{\times}\;10^{-4}$ M dimethylglyoxime. The modified electrode conditioned by potential recycling in a potential range of -900${\sim}$900 mV vs. Ag/AgCl by cyclic voltammetry in alkaline medium (1 M NaOH). The results show that the CuDMG film on the electrode behaves as an efficient catalyst for the electro-oxidation of cyclohexanol in alkaline medium via Cu (III) species formed on the electrode.

Cu Diffusion Behavior of Ni-B Diffusion Barrier Fabricated by Electroless Deposition (무전해 도금법으로 제조된 Ni-B 확산 방지막의 Cu 확산 거동)

  • Choi, Jae-Woong;Hwang, Gil-Ho;Han, Won-Kyu;Lee, Wan-Hee;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.577-584
    • /
    • 2005
  • Thin Ni-B layer, $1{\mu}m$ thick, was electrolessly deposited on Cu electrode fabricated by electro-deposition. The purpose of the layer is to encapsulate Cu electrodes for preventing Cu oxidation and to serve as a diffusion barrier. The layers were annealed at $580^{\circ}C$ with and without pre-annealing at $300^{\circ}C$ for . 30minutes. In the layer with pre-annealing, the amount of Cu diffusion was lower about 5 times than the layer without pre-annealing. The difference in Cu concentration may be attributed to $Ni_3B$ formation prior to Cu diffusion. However, the difference in Cu concentration decreased during the annealing time of 5 h due to the grain growth of Ni.