• Title/Summary/Keyword: Cumulative fatigue damage

Search Result 115, Processing Time 0.024 seconds

A Probabilistic Analysis for Fatigue Cumulative Damage and Fatigue Life in CFRP Composites Containing a Circular Hole (원공을 가진 CFRP 복합재료의 피로누적손상 및 피로수명에 대한 확률적 해석)

  • 김정규;김도식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1915-1926
    • /
    • 1995
  • The Fatigue characteristics of 8-harness satin woven CFRP composites with a circular hole are experimentally investigated under constant amplitude tension-tension loading. It is found in this study that the fatigue damage accumulation behavior is very random and history-independent, and the fatigue cumulative damage is linearly related with the mean number of cycles to a specified damage state. From these results, it is known that the fatigue characteristics of CFRP composites satisfy the basic assumptions of Markov chain theory and the parameter of Markov chain model can be determined only by mean and variance of fatigue lives. The predicted distribution of the fatigue cumulative damage using Markov chain model shows a good agreement with the test results. For the fatigue life distribution, Markov chain model makes similar accuracy to 2-parameter Weibull distribution function.

The Fatigue Cumulative Damage and Life Prediction of GFRP under Random Loading (랜덤하중하의 GFRP의 피로누적손상거동과 피로수명예측)

  • Kim, Jeong-Gyu;Sim, Dong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3892-3898
    • /
    • 1996
  • In this study, the prediction of the fatigue life as well as the extimation of the characteristics of fatigue cumulative damage on GFRP under random loading were performed. The constant amplitude tests and the ramdom loading test were carried on notched GFRP specimens with a circular hole. Random waves were generated with a micro-computer and had wide band spectra. Since it is useful that the prediction of fatigue life ot the given load sequences is based on S-N curves under constant amplitude loading, the estimation of equivalent stress is done on every random waves. The equivalent stress wasat first estimated by Miner's rule and then by the proposed model which was based on Hashin-Rotem's comulative damage theory regarding nonlinear fatigue cumulative damage behavior. The fatigue lives were predicted from each equivalent stress evaluated. And each predicted fatigue llife was compared with experimental results. The number of cycles of random loads were counted by mean-cross counting method. The reuslts showed that the fatigue life predicted by proposed model was correlated well with the experimental results in comparison with Miner's model.

Fatigue Life Prediction of Stainless Steel Using Acoustic Emission (음향방출법을 이용한 스테인레스강 피로수명 예측)

  • Kim, Y.H.;Jung, C.K.;Yang, Y.C.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.193-198
    • /
    • 2001
  • The feasibility of the acoustic emission technique in predicting the residual fatigue life of STS304 stainless steel is presented. Acoustic emission was continuously monitored during the fatigue tests. Considerable acoustic emission occurred during the first few cycles. Acoustic Emission increased rapidly at about 90% of the fatigue life, clear and ample warning of impending fatigue failure was observed. Fatigue damage accumulation was evaluated in terms of an AE cumulative counts. The AE cumulative counts may be taken as an indicator of fatigue cumulative damage. Fatigue damages corresponding to 20, 40, 60 and 80% of the total life were induced at a cyclic stress amplitude. The specimens with and without fatigue damage were subjected to tensile tests. In tensile tests, the total cumulative counts were reduced with increasing fatigue damage. It was observed that the residual tensile strength of material did not change significantly with prior cyclic loading damages.

  • PDF

The fatigue analysis using cumulative damage rule (Miner's rule) for the welding areas of carbody structure (누적손상법(Miner's rule)을 이용한 철도차량 차체 용접부의 피로평가)

  • Kim, Kwang-Woo;Park, Geun-Soo;Park, Hyung-Soon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.30-34
    • /
    • 2007
  • Structural integrity of railway vehicles should last for a long period against various and continuous fatigue loadings, and the carbody structures of railway vehicle are manufactured by applying multiform welding types for each material. Since the most of cracks are occurred and proceeded at the vicinity of welding area during the lifetime of carbody structure, the fatigue strength evaluation for welding area of carbody structure should have been carried out. Rotem Company has evaluated lifetime and fatigue strength of carbody structure according to the fatigue analysis based on the international standard and/or inner-official regulation. This study introduces the fatigue analysis method that we have evaluated and calculated the damages for the welding areas of carbody structure under various fatigue loading conditions using cumulative fatigue damage rule(Miner's rule) to verify whether the cumulative damage does exceed unity. This study contains the fatigue test of specimens to derive stress-life relations(S-N curve), sub-modeling analysis and the calculation of cumulative damages under fatigue loading. The fatigue analysis verifies the welding area shall be capable of withstanding under fatigue loading, identifies how critical area shall be selected and presents the principles to be used for design verification.

  • PDF

A cumulative damage model for extremely low cycle fatigue cracking in steel structure

  • Huanga, Xuewei;Zhao, Jun
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.225-236
    • /
    • 2017
  • The purpose of this work is to predict ductile fracture of structural steel under extremely low cyclic loading experienced in earthquake. A cumulative damage model is proposed on the basis of an existing damage model originally aiming to predict fracture under monotonic loading. The cumulative damage model assumes that damage does not grow when stress triaxiality is below a threshold and fracture occurs when accumulated damage reach unit. The model was implemented in ABAQUS software. The cumulative damage model parameters for steel base metal, weld metal and heat affected zone were calibrated, respectively, through testing and finite element analyses of notched coupon specimens. The damage evolution law in the notched coupon specimens under different loads was compared. Finally, in order to examine the engineering applicability of the proposed model, the fracture performance of beam-column welded joints reported by previous researches was analyzed based on the cumulative damage model. The analysis results show that the cumulative damage model is able to successfully predict the cracking location, fracture process, the crack initiation life, and the total fatigue life of the joints.

Fatigue Damage Assessment for Steel Structures Subjected to Earthquake (지진에 대한 강구조물의 피로손상도 추정법)

  • Song, Jong Keol;Yun, Chung Bang;Lee, Dong Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.95-105
    • /
    • 1997
  • Structures subjected to strong seismic excitation may undergo inelastic deformation cycles. The resulting cumulative fatigue damage process reduces the ability of structures and components to withstand seismic loads. Yet, the present earthquake resistance design methods focus mainly on the maximum displacement ductility, ignoring the effect of the cyclic responses. The damage parameters closely related to the cumulative damage need to be properly reflected on the aseismic design methods. In this study, two cumulative damage assessment methods derived from the plastic fatigue theory are investigated. The one is based on the hysteretic ductility amplitude, and the other is based on the dissipated hysteretic energy. Both methods can consider the maximum ductility and the cyclic behavior of structural response. The validity of two damage methods has been examined for single degree of freedom structures with various natural frequencies against two different earthquake excitations.

  • PDF

Comparison of Cumulative Damage Models by predicting Fatigue lives of Aircraft Flaperon Joint (손상누적모델의 비교를 통한 플래퍼론 연결부의 피로수명 예측)

  • Park, Tae-Young;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.4
    • /
    • pp.27-34
    • /
    • 2009
  • This paper deals with the lifetime prediction of Aircraft Flaperon Joint made of AISI 4130 steel. Reviews are performed on the published damage models at first. And three different damage models are used for predicting the fatigue life of the structure subjected to variable amplitude fatigue loading. These models require no increase in complexity of use, nor do they require additional material property or mission loading information to achieve the improved accuracy. Finally a comparison among the fatigue results is performed. It is observed that the Miner's rule could predict longer life than other cumulative damage models which take into account loads below the endurance limit.

  • PDF

The Probabilistic Analysis of Fatigue Damage Accumulation Behavior Using Markov Chain Model in CFRP Composites (Markov Chain Model을 이용한 CFRP 복합재료의 피로손상누적거동에 대한 확률적 해석)

  • Kim, Do-Sik;Kim, In-Bai;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1241-1250
    • /
    • 1996
  • The characteristics of fatigue cumulative damage and fatigue life of 8-harness satin woven CFRP composites with a circular hole under constant amplitude and 2-level block loading are estimated by Stochastic Makov chain model. It is found in this study that the fatigue damage accumulation behavior is very random and the fatigue damage is accumulated as two regions under constant amplitude fatigue loading. In constant amplitude fatigue loading the predicted mean number of cycles to a specified damage state by Markov chain model shows a good agreement with the test result. The predicted distribution of the fatigue cumulative damage by Markov chain model is similar to the test result. The fatigue life predictions under 2-level block loading by Markov chain model revised are good fitted to the test result more than by 2-parameter Weibull distribution function using percent failure rule.

Fatigue analysis of pressure vessel in view of wind and seismic loads (풍력과 지진하중을 고려한 압력용기의 피로해석)

  • 박진용;황운봉;박상철;박동환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.596-603
    • /
    • 1991
  • Fatigue life prediction of pressure vessel is studied analytically using cumulative damage models and linear elastic fracture mechanics method. The stresses are analyzed by finite element method. During operation, the maximum stress occurs at the outside of neck region while fatigue analysis indicates that the bottom of nozzle part has the shortest fatigue life. Previously proposed fatigue life prediction equation and cumulative damage model are modified successfully by introducing reference fatigue modulus. It is found that the modified life prediction equation and damage model are useful for lower stress level application.

Evaluation of Cumulative Damage of Pavement Concrete Using Split Tension Fatigue Test (쪼갬인장 피로시험 방법에 의한 포장용 콘크리트의 누적 손상 평가)

  • 윤병성;김동호;정원경;이봉학;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.353-358
    • /
    • 2002
  • The purpose of this paper was to estimate the cumulative damage of pavement concrete by split tension fatigue test. The split tension fatigue test of variable amplitude loading were performed in two and three stages. The results of the fatigue test by variable amplitude loading showed that the sums of damage were greater than 1 in the increasing sequence loading tests, and less than 1 in the decreasing sequence loading tests. The remaining life estimated by equivalent damage theory was almost similar to that of experimental results.

  • PDF