• Title/Summary/Keyword: Cuprate

Search Result 27, Processing Time 0.048 seconds

Reactivity of Tricarbonyl(2-methyl-1-phenylpentadienyl)iron(+1) Cation (Tricarbonyl(2-methyl-1-phenylpentadienyl)iron(+1) 양이온의 반응성)

  • Jin, Myung Jong;Choi, Heung Sik
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.71-75
    • /
    • 1995
  • Tricarbonyl(2-methyl-1-phenylpentadienyl)iron(+1) hexafluorophosphate cation was prepared by the protonation of tricarbonyl(4-methyl-5-hexadien-1-ol)iron wit hexafluorophosphoric acid. Reaction of the cation with water, dimethyl cuprate, diphenylacetylenyl cuprate, and enolate of cyclohexanone gave the corresponding (η4-1,3-diene)Fe(CO)3. The regioselectivity for the nucleophilic attack appears to the predominantly the result of steric effect.

  • PDF

Superconductivity of infinite layer cuprate

  • Lee, Sung-Ik;Jung, Chang-Wook;Kim, Ji-Yeon;Kim, Heon-Jung;Park, Min-Seok
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.1-1
    • /
    • 2000
  • The infinite layer compound $ACuO_2$, (A-Alkaline earth) consists of infinite stacking of $CuO_2$ planes separated only by alkaline earth ions. This compound attracted much attention because it contains only key ingredient of all cuprate high temperature superconductor; $CuO_2$ plane with controllable carrier concentration without charge reservoir block. High pressure synthesis method has been found to be preferable for this system due to its ability of doping various lanthanide ion into A site with larger superconducting volume fraction. But rigorous study on this rudimentary compound has been hindered by insufficient quality of sample. Especially superconductlng volume fraction was often too small to identify its origin. In this presentation, we report high pressure synthesis of $Sr_{0.9}Ln_{0.1}CuO_2$ (Ln=La, Sm). By controlling the heating temperature precisely during high pressure synthesis we could have superconductors with quite high superconducting volume fraction for this compound. The magnetic properties of the graln aligned samples show very different behavior compared to the cuprate high temperature superconductors. Details will be discussed.

  • PDF

Preparation of Phase Pure Cuprate Superconductors via The Modification of Sol-Gel Method

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.144-148
    • /
    • 2000
  • A modification of the sol-gel method to obtain phase pure superconducting oxides is described. The method starts from organic salts of yttrium, barium and copper, such as acetates, and avoids the sudden and uncontrollable decomposition of the organic fraction which occurs if nitrates are used as starting materials. The aqueous solution obtained with citric acid in an alkaline medium is concentrated under vacuum. The solid so prepared is decomposed at about $300^{\circ}C$ thus giving an oxide precursor containing well dispersed yttrium, barium and copper. Pyrolysis at 850 - $920^{\circ}C$ followed by oxygen annealing gives the superconducting orthorhombic 123 phase. The results of TGA/DTA of the precursor, as well as XRD, electrical and magnetic property measurements on the pyrolysis products are presented and discussed.

Eliashberg Calculation of the Momentum-Resolved Self-Energy for the Cuprate Superconductors Induced by the Spin Fluctuations (구리 산화물 계열 초전도체에서의 스핀 요동에 의한 자체 에너지의 엘리아시버그 계산)

  • Hong, Seung-Hwan;Choi, Han-Yong
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.146-150
    • /
    • 2012
  • We solve the momentum resolved d-wave Eliashberg equation employing the magnetic excitation spectrum from the inelastic neutron scattering on the LSCO superconductors reported by Vignolle et al. The magnetic excitation spectrum exhibits 2 peaks: a sharp incommensurate peak at 18 meV at momentum (${\pi}$, ${\pi}{\pm}{\delta}$) and (${\pi}{\pm}{\delta}$, ${\pi}$) and another broad peak near 40~70 meV at momentum (${\pi}$, ${\pi}$). Above 70 meV, the magnetic excitation spectrum has a long tail that is shaped into a circle centered at (${\pi}$, ${\pi}$) with ${\delta}$. The sign of the real part of the self-energy is determined by the momentum position of the peaks of the magnetic excitation spectrum and bare dispersion. We will discuss the effects of the each component of the magnetic excitation spectrum on the self-energy, the pairing self-energy.

Temperature Dependent Angle Resolved Photoemission Spectroscopy Study of Pseudo-gaps in $Sm_{1.82}Ce_{0.18}CuO_4$ (각분해 광전자분석 실험을 이용한 $Sm_{1.82}Ce_{0.18}CuO_4$ 물질의 온도에 따른 가짜 갭 연구)

  • Song, D.J.;Choi, H.Y.;Kim, Chul;Park, S.R.;Kim, C.;Eisaki, H.
    • Progress in Superconductivity
    • /
    • v.11 no.2
    • /
    • pp.83-86
    • /
    • 2010
  • There are theoretical and experimental evidences for the pseudo-gap in electron doped cuprates being due to interaction between electrons and anti-ferromagnetism(AFM). A remaining issue is on how AFM correlates with pseudo-gap, and eventually with superconductivity. To elucidate the issue, we have performed temperature dependent angle-resolved photoemission studies of an e-doped cuprate superconductor $Sm_{2-x}Ce_xCuO_4$(SCCO) x=0.18 at 20K and 150K. In the case of $Nd_{2-x}Ce_xCuO_4$, the most well known e-doped cuprate, pseudo-gap disappears at around 100 K for x=0.17. Our experimental result reveals that the pseudo-gap of SCCO exists even at 150K for x=0.18. This result implies that the AFM of SCCO survives even in x=0.18, which agrees with previously reported phase diagram of SCCO. Yet, the superconductivity disappears around x=0.18 for both NCCO and SCCO in spite of the difference in the magnetic order. This result sheds a light on the disappearance of superconductivity on the over-doped side.

Synthesis and Structure of Bis(ethylenediamine) cuprate(II)$\cdot$Dichromate (Bis(ethylenediamine) cuprate(II)$\cdot$Dichromate의 합성 및 결정구조 연구)

  • Kim, Seung-Bin;Namgung, Hae
    • Korean Journal of Crystallography
    • /
    • v.16 no.1
    • /
    • pp.38-42
    • /
    • 2005
  • The crystal structure of Bis(ethylenediamine) cuprate(II)$\cdot$dichromate, $Cu(C_2H_8N_2)_2{\cdot}Cr_2O_7$, has been determined by X-ray crystallography. Crystal data: a=5.682(2), b=8.567(3), c=14.839(3) ${\AA},\;{\alpha}=97.50(2),\;{\beta}=101.06(1),\;{\gamma}=109.38(2)^{\circ}$ Triclinic, P-1 (SG No=2), Z=2, V=653.9(2) ${\AA}^3,\;D_c=2.030gcm^{-3},\;{\mu}=3.273mm^{-1}$. The structure was solved by Patterson method and refined by full matrix least-square methods uslng unit weights. The final R and S values were $R_1=0.0256,\;R_w=0.0708,\;R_{all}=0.0316,\;S=1.151$ for the observed 2291 reflections. The two cupper complex ion has the usual distorted octahedral structure with mean four Cu-N distances of 2.010(3) $\AA$ and the longer mean Cu-O distance of 2.525(2) $\AA$. The Cu-complex and dichromate ions are linked to form infinite chain arranged alternatively along the [111]-direction. The neighboring chains in the (0-11) plane are connected with N1-O5 and N3-O1 hydrogen bonds.

Annealing condition dependence of the superconducting property and the pseudo-gap in the protect-annealed electron-doped cuprates

  • Jung, Woobeen;Song, Dongjoon;Cho, Su Hyun;Kim, Changyoung;Park, Seung Ryong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.14-17
    • /
    • 2016
  • Annealing as-grown electron-doped cuprates under a low oxygen-partial-pressure condition is a necessary step to achieve superconductivity. It has been recently found that the so-called protect annealing results in much better superconducting properties in terms of the superconducting transition temperature and volume fraction. In this article, we report on angle-resolved photoemission spectroscopy studies of a protect-annealed electron-doped cuprate $Pr_{0.9}La_{1.0}Ce_{0.1}CuO_4$ on annealing condition dependent superconducting and pseudo-gap properties. Remarkably, we found that the one showing a better superconducting property possesses almost no pseudo-gap while others have strong pseudo-gap feature due to an anti-ferromagnetic order.

Magnetic relaxation measurement of infinite layer superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$

  • Kim, Heon-Jung;Kim, Mun-Seog;Cung, C.U.;Kim, Ji-Yeon;Lee, Sung-Ik
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.121-124
    • /
    • 2000
  • The time dependence of irreversible magnetization of grain aligned infinite layer superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$ was measured in temperature range of 2 K < T < 30 K for H= 0.5 T, 1.0 T and 1.5 T parallel to c-axis. From this, we calculated normalized flux creep rate S(T) ${\equiv}$ dlnM/dlnt and found that the temperature independent region in S(T) is significantly wide in comparision with other cuprate superconductors. Using the method of Maley et al., we also deduce the current density dependence of pinning potential and glassy exponent ${\mu}$.

  • PDF