• Title/Summary/Keyword: Cured Tire

Search Result 12, Processing Time 0.02 seconds

Effect of Aging on Adhesive Strength of Rubber-steel Cord Composite and Tire-endurance (고무-스틸 코드 접착력과 타이어 내구력에 미치는 노화의 영향)

  • Lim, Won-Woo
    • Journal of Adhesion and Interface
    • /
    • v.3 no.2
    • /
    • pp.40-44
    • /
    • 2002
  • We invested effect of the keeping-time of uncured composite and thermal aging, of cured composite on adhesive strength for rubber-brass coated steel cord composite in this study. We also evaluated how the adhesive strength affects to tire endurance. Using PAD adhesion specimen, peel adhesive strength was measured. The uncured composite was kept for several days up to 35 days in factory. Cured composite was also kept for 5 and 10 days at $85^{\circ}C$ in dry oven. Peel adhesive strength was decreased with increasing keeping-time and showed lower value with increasing thermal aging time. The lower peel adhesive strength, the lower tire-endurance. This fact was caused by the humidity and thermal aging which affected in the decrease of adhesive strength of the rubber-steel cord composite and resulted in interface fracture between rubber and steel cord. This phenomenon was confirmed from SEM investigation and tire-endurance. It was just known that corrosion of steel cord's surface and aging of adhesive layer strongly affected to decrease of adhesive strength. This resulted in directly decreasing tire-endurance.

  • PDF

Microwave Cure of Rubber Compound for Tire Tread (타이어 트레드용 고무배합물의 마이크로파 가황)

  • Han, Shin;Kang, Yong-Gu;Sohn, Bong-Young;Oh, Sei-Chul;Park, Chan-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.69-75
    • /
    • 1999
  • Intending to develop a new rubber curing process using only microwave, the both the characteristics of cure and the mechanical properties of rubbers for the tire tread, for which a green styrene-butadiene compounds had been cured with 2.45 GHz microwave, have been compared with those of the custom thermal cured rubber. The unintentional hot spot formation in the compound during the microwave curing has not found where the compound has a microwave absorbing ceramic powders in 4.18 weight percents and the supplying voltage has been adjusted to 90 volts. The new microwave process accomplished preheating to 418K in a quarter of the thermal cure time. The average tensile strength of the microwave-cured rubber indicating $190kg/cm^3$ was compatible to that of the thermal cure. In conclusion, the new microwave cure had approved to be applicable in a commercial plant.

  • PDF

Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils

  • Karabash, Zuheir;Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • This paper presents a series of conventional undrained triaxial compression tests conducted to determine the effect of both tire crumbs and cement addition on Narli sand specimens. The tire crumb contents and cement contents were 3%, 7%, 15%; and 1%, 3%, 5% by dry weight of the sand specimens respectively. Specimens were prepared at about 35% relative density, cured during overnight (about 17 hours) for artificially bonding under a 100 kPa effective stress (confining pressure of 500 kPa with a back pressure of 400 kPa), and then sheared. Deviatoric stress-axial strain, pore water pressure-axial strain behavior, and Young's modulus of the specimens at various mixture ratios of tire crumb/cement/sand were measured. Test results indicated that the addition of tire crumb to sand decreases Young's modulus, deviatoric stress and brittleness, and increase pore water pressure generation. The addition of cement to sand with tire crumbs increases deviatoric stress, Young's modulus, and changes its ductile behavior to a more brittle one. The results suggest that specimen formation in the way used here could reduce the tire disposal problem in not only economically, and environmentally, but also more effectively beneficial way for some geotechnical applications.

A Study on the Curing Bladder Shaping of Tire by Finite Element Method Using Contact Element (접촉요소를 이용한 유한요소법에 의한 타이어 가류브레더 팽창거동에 관한 연구)

  • Kim, Hang-Woo;Hwang, Gab-Woon;Cho, Kyu-Zong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.378-384
    • /
    • 1997
  • In curing process of tire, contact and slip occurs between green tire and curing bladder. The curing process is a critical step in the manufacture of tires. In this investigation, curing bladder shaping is examined using a finite element method. Specifically, a finite element model between the inner part of green tire and the outer part of curing bladder is generated using contact element and curing bladder is generated using incompressible element. Numerical analysis are performed on two different bladder types, different overall outer diameters of curing bladder and different heights of curing bladder. Numerical results show that contact pressure is increased by using toroidal type of curing bladder, increasing overall diameter and increasing height of curing bladder. To obtain natural equilibrium carcass line, there is a requirement in increasing contact pressure of the section between side and bead.

Interfaces Between Rubber and Metallic or Textile Tire Cords

  • Ooij Wim J. Van;Luo Shijian;Jayaseelan Senthil K,
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.299-314
    • /
    • 1999
  • Bonding metal and textile components to rubber has always posed a problem. In this paper, an attempt had been made to modify textile and metal surfaces for bonding with rubber. The metal surfaces were modified using silane coupling agents and textile fibers were modified using plasma polymerization techniques. Some results on adhesion of metals to a range of sulfur-cured rubber compounds using a combination of organofunctional silanes are given here. The treatment was not only effective for high-sulfur compounds but also for low-sulfur com pounds as used in engine mounts and even for some semi-EV compounds. Coatings of plasmapolymerized pyrrole or acetylene were deposited on aramid and polyester tire cords. Standard pull-out force adhesion measurements were used to determine adhesion of tire cords to rubber compounds. The plasma coatings were characterized by various techniques and the performance results are explained in an interpenetrating network model.

  • PDF

Direct Analysis of Organic Additives in Cured Rubber by Pyrolysis-Gas Chromatography/Mass Spectrometry (열분해-가스크로마토그래피/질량분석법에 의한 가황고무중의 유기첨가제의 직접분석)

  • Kim, Seung Wook;Heo, Gwi Suk;Lee, Gae Ho
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.10
    • /
    • pp.524-534
    • /
    • 1997
  • Analysis of additives in cured rubber is often a difficult task for analytical chemists because of a wide variety of complex components. Conventional analyses of additives and rubbers have been done in multistep, off-line processes with large sample size and extensive sample preparations. The coumarone-indene resin, resorcinol-formaldehyde resin, and prevulcanization inhibitor have been characterized by their pyrolysis pathways and mass spectra of characteristic pyrolyzates. Pyrolysis Gas Chromatography/Mass Spectrometry (Py-GC/MS) was used in the identification of additives without any sample pretreatment. This result shows that several organic additives in cured rubber can be directly analyzed.

  • PDF

On Some Changes in Polymer Blend Topological and Molecular Structures Resulted from Processing

  • Jurkowski, B.;Jurkowska, B.;Nah, C.
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.234-243
    • /
    • 2002
  • A general scheme of a rubber structure is proposed. Using the thermomechanical method(TMA), some changes in the molecular and topological structures for uncured and cured, and unfilled and filled rubbers during processing are shown. In our investigations as region it is understood a complex structure, which is expressed at the thermomechanical curve(TMC) as a zone differed from others in thermal expansion properties. This zone is between the noticed temperatures of relaxation transitions, usually on the level like those determined by DMTA at 1Hz. These regions, which shares, are not stable, and differ in molecular-weight distribution(MWD) of chain fragments between the junctions. Differences in dynamics of the formation of the molecular and topological structures of a vulcanizate are dependent on the rubber formulation, mixing technology and curing time. Some of characteristics of these regions correlate with mechanical properties of vulcanizates what is shown for NR rubbers containing ENR or CPE as a polymeric additive. It is well known that the state of order influences diffusivity of low-molecular substances into the polymer matrix. Because of this, the two topological amorphous regions should influence the distribution of the ingredients and resulting in rubber compounds' heterogeneity, and related properties of cured rubber. Investigation of this problem is expected to be, in the future, one of the essential factors in determining further improvement of polymeric materials properties by compounding with additives and in reprocessing of rubber scrap.

Mechanical properties of concrete containing recycled materials

  • Solanki, Pranshoo;Dash, Bharat
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.207-220
    • /
    • 2016
  • The objective of this study was to evaluate the influence of recycled materials, namely, shredded scrap tire (SST), reclaimed asphalt pavement (RAP) and class C fly ash (CFA) on compressive and tensile strength of concrete. Either SST or RAP was used as an aggregate replacement and class C fly ash (CFA) as Portland cement replacement for making concrete. A total of two types of SST and RAP, namely, chips and screenings were used for replacing coarse and fine aggregates, respectively. A total of 26 concrete mixes containing different replacement level of SST or RAP and CFA were designed. Using the mix designs, cylindrical specimens of concrete were prepared, cured in water tank, and tested for unconfined compressive strength (UCS) and indirect tensile strength (IDT) after 28 days. Experimental results showed aggregate substitution with SST decreased both UCS and IDT of concrete. On the contrary, replacement of aggregate with RAP improved UCS values. Specimens containing RAP chips resulted in concrete with higher IDT values as compared to corresponding specimens containing RAP screenings. Addition of 40% CFA was found to improve UCS values and degrade IDT values of SST containing specimens. Statistical analysis showed that IDT of SST and RAP can be estimated as approximately 13% and 12% of UCS, respectively.

Development of Electric Hoist Device for Rack in Tobacco Bulk curing Barn (담배 벌크건조기의 래크용 전동발달기 장치 개발)

  • 김용암;류명현;백종운
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.1
    • /
    • pp.90-93
    • /
    • 2001
  • In order to save hanging labor hours and reduce work intensity for bulk curing of the flue-cured tobacco, and electric hoist was developed. It consists of a pair of square steel frames with side plates and rolling casters to move back and forth on the second tire of bulk barn, and wire rope type lift was attached to the beneath of its top center. The lift driven by DC motor could be controlled by operating switch with one limit switch and control box, and a scissors shaped gripper was deviced to grip tobacco rack to the end of wire rope. As the results of experiments with electric hoist, labor hours for hanging could be saved by 30 to 40% as compared with those in conventional method. With simple and light structure, it was possible for even woman to load the harvested tobacco, and it could be recommended for farmers to use this device with reasonable price.

  • PDF