• Title/Summary/Keyword: Curtain air bag

Search Result 3, Processing Time 0.018 seconds

Dynamic PIV analysis of High-Speed Flow from Vent Holes of Fill-Hose in Curtain type Airbag (Dynamic PIV 기법을 이용한 커튼에어백 Vent Hole 고속유동 해석)

  • Jang, Young-Gil;Choi, Yong-Seok;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.17-20
    • /
    • 2006
  • Passenger safety is fundamental factor in automobile. Among much equipment for passenger safety, the air bag system is the most fundamental and effective device. Beside of the front air bag system which installed on most of all automobiles, a curtain-type air bag is increasingly adapted in deluxe cars fur protecting passengers from the danger of side clash. Curtain type airbag system consists of inflator housing, fill hose, curtain airbag. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to deploy the air bag-curtain. Fill hose is a passageway to carry the gases from inflator housing to each part of curtain airbag. Therefore, it is very important to design the vent holes of fill hose for good performance of airbag deployment. But, the flow information from vent holes of fill hose is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the vent holes of fill hose using a dynamic PIV system. From the velocity Held data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the vent holes in the initial stage, we can see a flow pattern of wavy motion and fluctuation. The flow ejecting from the vent holes was found to have very high velocity fluctuations and the maximum velocity was about 480m/s at 4-vent hole region. From the mass flow rate with time, the accumulated flow of 4-vent hole has occupied about 70% of total flow rate.

  • PDF

Dynamic PIV analysis of High-Speed Flow Ejected from the Inflator Housing of a Curtain-type Airbag (Dynamic PIV를 이용한 커튼형 에어백 부품림 장치의 유동해석)

  • Jang, Young-Gil;Kim, Seok;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.407-408
    • /
    • 2006
  • Passenger safety is one of the most important considerations in the purchase of an automobile. A curtain-type air bag is increasingly adapted in deluxe cars for protecting passengers from the danger of side clash. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to pump up the air bag-curtain. Although the inflator housing is fundamental in designing a curtain-type air bag system, flow information on the inflator housing is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the airbag inflator housing in the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing was found to have large velocity fluctuations and the maximum velocity was about 700m/s. The velocity of high-speed flow was decreased rapidly and the duration of high-speed flow over 400m/s was maintained only to 30ms. After 100ms, there was no perceptible flow.

  • PDF

Statistical Review for New USNCAP Side Crash Test Results (새로운 미국 측면 신차안전도평가 결과에 대한 통계적 분석)

  • Beom, Hyenkyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.104-113
    • /
    • 2013
  • New USNCAP has been carried out by NHTSA including front and side crash from MY2011. In this paper, test results for USNCAP Side crash were reviewed by statistical analysis. This review focused on side crash test results to investigate the effect of changes from new USNCAP side crash test protocol among 30 passenger cars. These results were summarized as followings. Total number of 5 star vehicles on the front seat dummy (16 vehicles, 53.3%) was slightly smaller than the rear seat's (17 vehicles, 56.7%) in MDB test. For the ES-2re dummy, chest injury, ie maximum rib deflection contributed to 66% in the mean value of $P_{joint}$. Pelvis injury was highly dependent upon performance up to 87% in the SID-IIs dummy cited on the rear seat in average $P_{joint}$. For Pole test, pelvis injury made contribution to the average performance to 83%. For standard deviation, it showed the largest value in the same body region as the mean value for each dummy. Overall front seat performance showed 14 vehicles, 44.6% with 5 star vehicles less than each MDB or Pole test result. This result showed that performances in MDB test were different pattern to Pole test on driver position. Number of 5star vehicles for overall side NCAP performance are 18 passenger cars (60%). Curtain airbag and driver thorax airbag were equipped in all test vehicles. One vehicle is equipped with thorax airbag in the rear seat. Results from two side tests considered as reliability problem, ie the cause for large standard deviation in side crash test. Consequently, the countermeasure for new USNCAP side crash test is essential to design the effective side structures for side collision and to control well dummy kinematics with curtain and thorax airbag in order to reduce chest and pelvis injuries.