• Title/Summary/Keyword: Cyclam

Search Result 24, Processing Time 0.024 seconds

Electrocatalytic Reduction of CO2 by Copper (II) Cyclam Derivatives

  • Kang, Sung-Jin;Dale, Ajit;Sarkar, Swarbhanu;Yoo, Jeongsoo;Lee, Hochun
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.106-110
    • /
    • 2015
  • This study investigates Cu(II) complexes of cyclam, propylene cross-bridged cyclam (PCB-cyclam), and propylene cross-bridged cyclam diacetate (PCB-TE2A) as homogeneous electrocatalysts for CO2 reduction in comparison with Ni(II)-cyclam. It is found that Cu(II)-cyclam can catalyze CO2 reduction at the potential close to its thermodynamic value (0.75 V vs. Ag/AgCl) in tris-HCl buffer (pH 8.45) on a glassy carbon electrode. Cu(II)-cyclam, however, suffers from severe demetalation due to the insufficient stability of Cu(I)-cyclam. Cu(II)-PCB-cyclam and Cu(II)-PCB-TE2A are revealed to exhibit much less demetalation behavior, but poor CO2 reduction activities as well. The inferior electrocatalytic ability of Cu(II)-PCB-cyclam is ascribed to its redox potential that is too high for CO2 reduction, and that of Cu(II)-PCB-TE2A to the steric hindrance preventing facile contact with CO2 molecules. This study suggests that in addition to the redox potential and chemical stability, the stereochemical aspect has to be considered in designing efficient electrocatalysts for CO2 reduction.

Preparation of High Spin Five-Coordinate Iron(II) Complexes of 1,4,8,11-Tetraazacyclotetradecane and High Spin Six-Coordinate Iron(II) Complexes of 1,5,8,12-Tetraazadodecane (1,4,8,11-테트라아자사이클로테트라데칸의 높은 스핀 다섯배위철(II) 착화합물과 1,5,8,12-테트라아자도데칸의 높은 스핀 여섯배위철(II) 착화합물의 합성)

  • Myunghyun Paik Suh
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.139-145
    • /
    • 1980
  • High spin iron(II) complexes of 1,4,8,11-tetraazacyclotetradecane (cyclam), a macrocyclic ligand, and 1,5,8,12-tetraazadodecane (3,2,3-tet), a noncyclic ligand, have been prepared. The reaction of low spin $[Fe(cyclam)(CH_3CN)_2](ClO_4)_2$ with chloride ion in methanol produces high-spin $[Fe(cyclam)Cl]ClO_4$. Although $[Fe(cyclam)(CH_3CN)_2](ClO_4)_2$ is low spin, $[Fe(3,2,3-tet)(CH_3CN)_2](ClO_4)_2$ isolated in the present study is high spin. This difference is explained in terms of the smaller constrictive effect exerted by the noncyclic ligand than the cyclic ligand. The isolation of $[Fe(cyclam)Cl]ClO_4$ provides evidences against the current view that the presence of either unsaturation or substituents on the macrocyclic ligands is necessary for the successful preparation of high spin five-coordinate iron (II) complexes. Reactions of $[Fe(cyclam)Cl]ClO_4\;and\;[Fe(3,2,3-tet)(CH_3CN)_2](ClO_4)_2$ with carbon monoxide yield low spin six-coordinate $[Fe(cyclam)Cl(CO)]ClO_4\;and\;[Fe(3.2,3-tet)(CH_3CN)(CO)](ClO_4)_2$, respectively.

  • PDF

Catalytic Oxidation of Cyclohexene with Hydrogen Peroxide over Cu(II)-Cyclam-SBA-16 Catalyst

  • Prasetyanto, Eko Adi;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.1033-1037
    • /
    • 2008
  • A copper cyclam-type complex was successfully immobilized onto mesoporous silica SBA-16. Characterization by NIR spectroscopy and TGA analysis confirmed that copper cyclam complex is immobilized onto mesoporous SBA-16. The Cu(II)-Cyclam-SBA-16 was proven to be a good catalyst for oxidation reaction of cyclohexene with conversion up to 77.8% after 13 h reaction and providing a high selectivity to cyclohexenol and 3-hydroperoxycyclohex-1-ene. The results suggest that the copper species play a major role as catalyst via reversible redox cycles as proven by cyclic voltammetry analysis.

Electronic Structure and Chemical Reactivity of Transition Metal Complexes (Part 16). A Spectroscopic Study on the Electronic Structure of cis-[Cr(cyclam)$Cl_2$]Cl (전이금속 착물의 전자 구조 및 화학적 반응성 (제 16 보). cis-[Cr(cyclam)$Cl_2$]Cl의 전자 구조에 관한 분광학적 연구)

  • Choi, Jong-Ha
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.501-507
    • /
    • 1995
  • The electronic structure of cis-$[Cr(cyclam)Cl_2]Cl$ has been investigated by the emission and excitation spectroscopy at 77K, and infrared and visible spectroscopy at room temperature. The ten electronic transitions due to spin-allowed and spin-forbidden are assigned. The zero-phonon line in the excitation spectrum splits into two components by $139\;cm^{-1}$, and it can be reproduced by modern ligand field theory. According to the results of ligand field analysis, we can confirm that nitrogen atoms of the cyclam ligand have a strong ${\sigma}$-donor character, but chloride ligand has weak ${\sigma}-$ and ${\pi}-$donor properties toward chromium(III) ion.

  • PDF

Complex of zinc(II) with tetraaza macrocyclic ligands in solution (용액에서 Zn(II)이온과 tetraaza 거대고리 리간드의 착물)

  • Koh Kwang-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.733-737
    • /
    • 2006
  • In this paper, we report the coordination state and structure of $Zn(cyclam)Cl_{2})$ complex that was studied by the Raman spectrum and conductivity method. The complex of zinc(II) ion with 1,4,8,11-tetraazacyclotetradecane(cyclam) ligand is formed in aqueous solution. According to the Raman spectrum of $Zn(cyclam)Cl_{2})$ complex, $H_{2}O$ molecule and $Cl^{-}$ ion compete for the trans coordination site of zinc(II) ion. We also have investigated the competition effect of $H_{2}O$ molecule and $Cl^{-}$ ion by the conductivity method. On addition of 1,4,8,11-tetraazacyclotetradecane(cyclam) ligand to the aqueous $ZnCl_{2}$ solution, 2: 1 electrolyte is changed to 1:1 electrolyte. We suggest the possibility of elimination of heavy metal because of the affinity effect of macrocyclic polyamine(1,4,8.11-tetraazacyclotetradecane) for the heavy metal,.

  • PDF

Saturated- and Unsaturated-Azamacrocyclic Complexes $(M = Co^{3+}, Fe^{3+}$ or $Mn^{3+})$ Catalyzed Oxidation of Hindered Phenols by Molecular Oxygen under Sodium Borohydride (Sodium Borohydride 하에서 산소에 의한 포화- 및 불포화-질소주게 거대고리 착물 $(M=Co^{3+},\;Fe^{3+}$$Mn^{3+})$을 촉매로 한 Hindered Phenols의 산화반응)

  • Yu-Chul Park;Seong-Su Kim;Hun-Gil Na
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.7
    • /
    • pp.648-654
    • /
    • 1993
  • $[M(cyclam)X_2]Y(M=Co^{3+},\;Fe^{3+},\;Mn^{3+}\;:\;X=Cl-^,\;Br^-,\;NCS^-\;:\;Y=Cl^-,\;Br^-,\;NCS^-),\;[Co(trans-14-diene)X_2]Y(X=Cl^-,\;Br^-\;:\;Y=ClO_4^-)\;and\;[Co(trans-14-diene)](ClO_4)_2$ were able to activate an molecular oxygen under sodium borohydride. 2,4-di-tert-butylphenol and 2,6-di-tert-butylphenol reacted with activated molecular oxygen to give 2,4-tert-butyl-1,6-benzoquinone(BQ) and 3,5,3',5'-tetra-tert-butyldiphenoquinone(DPQ). The saturated tetraazamacrocyclic complexes, $[Co(cyclam)X_2]Y$, were more an effective catalyst than $[Co(trans-14-diene)X_2]Y$ the unsaturated complexes in the formation of BQ and DPQ. The mole ratio of $O_2$ vs. catalyst $(O_2/M)$ for $[Co(cyclam)X_2]Y$ and [Co(trans-14-diene)X_2]Y$ was 1/1, while it was 1/2 for $[M(cyclam)Cl_2]Cl(M=Fe(III),\;Mn(III))$. The results suggested that Co(III)-macrocyclic complexes activated molecular oxygen as superoxolike ${O_2}^-$ and $[M(cyclam)Cl_2]Cl(M=Fe(III),\;Mn(III))$ activated that as peroxolike $O_2^{2-}$.

  • PDF

Development of Macrocyclic Ligands for Stable Radiometal Complexes (안정한 방사금속 착물을 위한 거대고리 리간드 개발)

  • Yoo, Jeong-Soo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.4
    • /
    • pp.215-223
    • /
    • 2005
  • Current interest in the regioselective N-functionalization of tetraazacycloalkanes (cyclen and cyclam) stems mainly from their complexes with radioactive metals for applications in diagnostic ($^{64}Cu,\;^{111}In,\;^{67}Ga$) and therapeutic ($^{90}Y$) medicine, and with paramagnetic ions for magnetic resonance imaging ($Gd^{+3}$). Selective methods for the N-substitution of cyclen and cyclam is a crucial step in most syntheses of cyclen and cyclam-based radiometal complexes and bifunctional chelating agents. In addition, mixing different pendent groups to give hetero-substituted cyclen derivatives would be advantageous in many applications for fine-tuning the compound's physical properties. So far, numerous approaches for the regioselective N-substitution of tetraazacycloalkanes and more specifically cyclen and cyclam are reported. Unfortunately, none of them are general and every strategy has its own strong points and drawbacks. Herein, we categorize numerous regioselective N-alkylation methods into three strategies, such as 1) direct substitution of the macrocycle, 2) introductiou of the functional groups prior to cyclization, and 3) protection/iunclionallrationideproteclion. Our discussion is also split into the methods of mono- and tri-functionalization and di-functionalizataion based on number of substituents. At the end, we describe new trials for the new macrocycles which iorm more stable metal complexes with various radiometals, and briefly mention the commercially available tetraazacycloalkanes which are used for the biconjugation of biomolecules.

Spectroscopic Properties of cis-(1,4,8,11-Tetraazacyclotetradecane)(1,2-propanediamine)chromium(Ⅲ) Perchlorate$^1$

  • Jong-Ha Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.118-122
    • /
    • 1993
  • The 77 K luminescence and excitation spectra, room-temperature FT-infrared and visible absorption spectra of a newly prepared complex cis-[Cr(cyclam)(pn)]$(ClO_4)_3$, where cyclam and pn represent 1,4,8,11-tetraazacyclotetradecane and 1,2-propanediamine respectively, have been measured. Absorption maximum of the first spin-allowed transition in the electronic absorption spectra of cis-[Cr(cyclam)(pn)]$^{3+}$ and cis-[Cr(cyclam)(en)]$^{3+}$ appears at nearly the same position. The two spin-allowed and six spin-forbidden electronic transitions are assigned from the visible absorption and excitation spectra. It is also shown that the zero phonon line in the excitation spectrum splits into two components by 50 cm$^{-1}$.