• Title/Summary/Keyword: Cyclic voltammetry

Search Result 1,016, Processing Time 0.032 seconds

Electrooxidation of DL-norvaline at Glassy Carbon Electrode: Approaching the Modified Electrode for Voltammetric Studies of Hydroquinone and Catechol

  • Kamel, Mahmoud M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2014
  • The DL-norvaline was electrochemically oxidized and deposited on the glassy carbon electrode surface using cyclic voltammetry (CV). The modified electrode was examined for electrochemical oxidation of hydroquinone (HQ) and catechol (CC). It exhibited good electrocatalytic ability towards their oxidation and simultaneous determination in a binary mixture using differential pulse voltammetry (DPV). The peak currents were linear to the concentration of HQ and CC, in the range from $5{\mu}M$ to $100{\mu}M$, and $4{\mu}M$ to $140{\mu}M$, respectively. The determination limits(S/N = 3) for HQ and CC were $1{\mu}M$ and $0.8{\mu}M$, respectively. The obtained modified electrode was applied to simultaneous detection of HQ and CC in water sample.

Applications of Voltammetry in Lithium Ion Battery Research

  • Kim, Taewhan;Choi, Woosung;Shin, Heon-Cheol;Choi, Jae-Young;Kim, Ji Man;Park, Min-Sik;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.14-25
    • /
    • 2020
  • Li ion battery (LIB) is one of the most remarkable energy storage devices currently available in various applications. With a growing demand for high-performance batteries, the role of electrochemical analysis for batteries, especially, electrode reactions are becoming very important and crucial. Among various analytical methods, cyclic voltammetry (CV) is very versatile and widely used in many fields of electrochemistry. Through CV, it is possible to know electrochemical factors affecting the reaction voltage and reversibility, and furthermore, quantitative analysis on Li+ diffusivity as well as intercalation and capacitive reactions, and also anionic redox reaction. However, the explanation or interpretation of the results of CV is often deficient or controversial. In this mini-review, we briefly introduce the principle of cyclic voltammetry and its applications in LIB to bring a better understanding of the electrochemical reaction mechanisms involved in LIB.

Photophysical and Electrochmical Studies of N,N-Bis (2,5-di-tert-butylphenyl) - 3,4,9,10 perylenebis (dicarboximide) (DBPI)

  • El-Hallag, Ibrahim S.;El-Daly, Samy A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.989-998
    • /
    • 2010
  • The titled dye of DBPI gives amplified spontaneous emission (ASE) with maximum at 580 nm upon pumping by nitrogen laser (${\lambda}_{ex}\;=\;337.1\;nm$). The ground state absorption cross section (${\sigma}_A$) and emission cross section (${\sigma}_E$) as well as effective emission cross section(${\sigma}^*_E$) have been determined. The electronic absorption spectra of DBPI were measured in ethanol and tetrahydrofuran at room and low temperature. DBPI displays molecular aggregation in water. The photochemical reactivity of DBPI was also studied in carbon tetrachloride upon irradiation with 525 nm light. The electrochemical investigation of DBPI dye has been carried out using cyclic voltammetry and convolution deconvolution voltammetry combined with digital simulation technique at a platinum electrode in 0.1 mol/L tetrabutyl ammonium perchlorate (TBAP) in two different solvents acetonitrile ($CH_3CN$) and dimethylformamide (DMF). The species were reduced via consumption of two sequential electrons to form radical anion and dianion (EE mechanism). In switching the potential to positive direction, the compound was oxidized by loss of two sequential electrons, which were followed by a fast dimerization and/or aggregation process i.e $EC_{dim1}EC_{dim2}$ mechanism. The electrode reaction pathway and the chemical and electrochemical parameters of the investigated compound were determined using cyclic and convolutive voltammetry. The extracted electrochemical parameters were verified and confirmed via digital simulation method.

Cyclic Voltammetry Study on Electrodeposition of CuInSe2 Thin Films (Cyclic Voltammetry를 이용한 CuInSe2 박막의 전기화학적 전착 연구)

  • Hong, Soonhyun;Lee, Hyunju;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.638-642
    • /
    • 2013
  • Chalcopyrite $CuInSe_2$(CIS) is considered to be an effective light-absorbing material for thin film photovoltaic solar cells. CIS thin films have been electrodeposited onto Mo coated and ITO glass substrates in potentiostatic mode at room temperature. The deposition mechanism of CIS thin films has been studied using the cyclic voltammetry (CV) technique. A cyclic voltammetric study was performed in unitary Cu, In, and Se systems, binary Cu-Se and In-Se systems, and a ternary Cu-In-Se system. The reduction peaks of the ITO substrate were examined in separate $Cu^{2+}$, $In^{3+}$, and $Se^{4+}$ solutions. Electrodeposition experiments were conducted with varying deposition potentials and electrolyte bath conditions. The morphological and compositional properties of the CIS thin films were examined by field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The surface morphology of as-deposited CIS films exhibits spherical and large-sized clusters. The deposition potential has a significant effect on the film morphology and/or grain size, such that the structure tended to grow according to the increase of the deposition potential. A CIS layer deposited at -0.6 V nearly approached the stoichiometric ratio of $CuIn_{0.8}Se_{1.8}$. The growth potential plays an important role in controlling the stoichiometry of CIS films.

Electrochemical Properties of Langmuir-Blodgett(LB) Film of Alkyl Bromides (브롬화 알킬화합물 LB막의 전기화학적 특성)

  • Park, Keun-Ho;Son, Tae-Chul;Min, Chang-Hun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.451-456
    • /
    • 2009
  • We carried out this experiment to observe an electrochemical properties for LB films of alkyl compounds by the cyclic voltammetry. Alkyl bromides was deposited by using the Langmuir- Blodgett method on the ITO glass. We measured to an electrochemical measurement by using cyclic voltammetry with a three-electrode system(an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode) in 0.5, 1.0, 1.5 and 2.0 N $NaClO_4$ solution. A measuring range was reduced from initial potential to -1350 mV, continuously oxidized to 1650 mV. The scan rate were 100 mV/s. As a result, an electrochemical properties of the LB films of alkyl bromides appeared irreversible process caused by only the oxidation current from the cyclic voltammogram. The diffusivity(D) effect of LB films decreased with increasing of alkyl compounds amount.

Electrochemical Properties of Langmuir-Blodgett Films of 4-Octyl-4'-(5-carboxy-pentamethylene-oxy)azobenzene and Dilauroyl-L-${\alpha}$-Phosphayidylcholine Mixture (4-Octyl-4'-(5-carboxy-pentamethylene-oxy)azobenzene과 Dilauroyl-L-${\alpha}$- Phosphayidylcholine의 혼합 LB막의 전기화학적 특성)

  • Kim, Beom-Joon;Min, Byoung-Chul;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • We carried out this experiment to observe electrochemical properties for LB films of phospholipid(Dilauroyl-L-${\alpha}$-Phosphayidylcholine) and 4-octyl-4'-(5-carboxypentamethylene-oxy)azobenzene mixture by the cyclic voltammetry. LB films of 8A5H and 8A5H-DLPC(1:1, 2:1) were deposited by using the Langmuir-Blodgett method on the ITO glass. We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system, An Ag/AgCl reference elect rode, a platinum wire counter electrode and LB film-coated ITO working electrode measured in 0.1, 0.5, and 1.0 mol/L $NaClO_{4}$ solution. A measuring range was reduced from initial potential to -1350 mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate were 50, 100, 150 and 200 mV/s. As a result, LB films of 8A5H 8A5H-DLPC appeared irreversible process caused by only the oxidation current from the cyclic voltammogram.

Adsorptive Behavior of Catechol Violet and Its Thorium Complex on Mercury Electrode in Aqueous Media

  • Rabia Mostafa K. M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • Cyclic voltammetry and chronocoulometry have been used for characterization of catechol violet (CV) at the hanging mercury drop electrode in acetic acid-sodium acetate buffer solution. At pH 2.94 a nearly symmetric cyclic voltammetric wave due to an irreversible weak adsorption of CV on mercury was obtained at concentration of $0.53{\mu}mol\;dm ^{-3}$. Under these conditions, CV adsorbes in a monolayer. Upon increasing the concentration, the symmetry of the wave decreases; it can be attributed to a mixed diffusion adsorption process. The amount of the adsorbed catechol violet on the HMDE expressed as surface concentration as well as the surface areaf occupied by one molecule$(\sigma)$ were calculated. It was found that the values obtained for f and o utilizing cyclic voltammetric and chrono-coulometry are almost identical. A 1:1 and 1:2 Th (IV)-CV complexes are formed on addition of thorium (IV) to catechol violet. These complexes are adsorbed and reduced on the HMDE at more negative potentials than the peak potential of free CV, Using the square-wave (SW) technique, the adsorptive cathodic stripping voltammetry, ACSV, of these complexes was studied. It was found that the SW-ACSV of Th(IV)-CV can be applied to the determination of thorium at the nanomole level. Optimum conditions and the analytical method of determination were presented and discussed.

Cyclic Voltammetry를 이용한 고농도 질산매질에서 Ag(I) 이온의 전착 특성 연구

  • 박상윤;문제권;최왕규;김영민;이근우;정종헌;오원진
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.563-567
    • /
    • 1998
  • 5M 이상의 질산 매질에 있는 Ag(Ⅰ) 이온을 전착회수하기 위하여 질산 농도에 따른 전착특성을 cyclic voltammetry 방법으로 조사하였다. Ag(Ⅰ) 이온의 전착은 질산 매질의 농도에 크게 영향을 받았으며 질산 농도가 3M 이하인 경우에는 백금을 전극에서 Ag(Ⅰ) 이온이 쉽게 전착될 수 있음을 알 수 있었다. 질산농도가 5M 이상에서는 질산 자체의 환원이 활발하게 일어나 Ag(Ⅰ) 이온의 전착을 억제하였으나 용액을 혼합시킬 경우 질산 환원의 영향을 크게 감소시킬 수 있었다

  • PDF

Electrochemical Properties for the Corrosion of Zinc Anode with Different Particle Size and Shape in Zinc/air Batteries (입자의 크기가 다른 아연공기전지용 아연음극의 부식에 관한 전기화학적 특성 연구)

  • Yang, Won-Geun;Hong, Jung-Eui;Oh, Rye-Gyeong;Oh, Ji-Woo;Kong, Young-Min;Ryu, Kwang-Sun
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.186-190
    • /
    • 2013
  • The electrochemical performance for the corrosion of zinc anodes according to particle size and shape as anode in Zn/air batteries was study. We prepared five samples of Zn powder with different particle size and morphology. For analysis the particle size of theme, we measured particle size analysis (PSA). As the result, sample (e) had smaller particle size with $10.334{\mu}m$ than others. For measuring the electrochemical performance of them, we measured the cyclic voltammetry and linear polarization in three electrode system (half-cell). For measuring the morphology change of them before and after cyclic voltammetry, we measured Field Emission Scanning Electron Microscope (FE-SEM). From the cyclic voltammetry, as the zinc powder had small size, we knew that it had large diffusion coefficient. From the linear polarization, as the zinc powder had small size, it was a good state with high polarization resistance as anode in Zn/air batteries. From the SEM images, the particle size had increased due to the dendrite formation after cyclic voltammetry. Therefore, the sample (e) with small size would have the best electrochemical performance between these samples.

Cyclic voltammetry characteristics of $MnO_2$ electrode mixed with PVDF in sulfuric acid solution (PVDF로 혼합된 $MnO_2$ 전극의 황산 수용액중의 cyclic voltammetry 특성)

  • Kim, Bong-Seo;Lee, Dong-Yoon;Lee, Hee-Woong;Kim, Hyun-Sik;Lee, Hae-Yon;Chung, Won-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.82-84
    • /
    • 2002
  • Dimensionally stable anode(DSA) can be used for the electrowinning of non-ferrous metal like as a Zn, and electrolysis of sea water. $MnO_2$ electrode satisfies the requirements of DSA, and has a good cycle life and a low overpotential for oxygen evolution. $MnO_2$ electrodes coated with DMF and PVDF based on Pb alloy produced at several compositions and dry temperatures. The viscosity of solvent used as a binder of $MnO_2$ powder increased with the increasing PVDF contents. When the ratio of PVDF to BMF with the 5 times dipping at the solution mixed with PVDF and DMF was 1/9, the coating thickness was $150{\mu}m$. When the ratio of PVDF to $MnO_2$ was lower than 1/6, the electrode didn't show any reaction irrespective of the concentrations of DMF. However, When the ratio of PVDF to $MnO_2$ was higher than 1/6, the electrode showed a constant current reactions and homogeneous cyclic voltammetry even though at a high cycle. The reason for the high current and homogeneous cyclic voltammetry is the good catalytic reactions of $MnO_2$ powder in electrode. The reactions of Pb electrode coated with $MnO_2$ and PVDF based on the pure Pb electrode.

  • PDF