• Title/Summary/Keyword: Cylinder theory

Search Result 209, Processing Time 0.02 seconds

Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.1-24
    • /
    • 2014
  • The present study deals with two dimensional electro-elastic analysis of a functionally graded piezoelectric (FGP) cylinder under internal pressure. Energy method and first order shear deformation theory (FSDT) are employed for this purpose. All mechanical and electrical properties except Poisson ratio are considered as a power function along the radial direction. The cylinder is subjected to uniform internal pressure. By supposing two dimensional displacement and electric potential fields along the radial and axial direction, the governing differential equations can be derived in terms of unknown electrical and mechanical functions. Homogeneous solution can be obtained by imposing the appropriate mechanical and electrical boundary conditions. This proposed solution has capability to solve the cylinder structure with arbitrary boundary conditions. The previous solutions have been proposed for the problem with simple boundary conditions (simply supported cylinder) by using the routine functions such as trigonometric functions. The axial distribution of the axial displacement, radial displacement and electric potential of the cylinder can be presented as the important results of this paper for various non homogeneous indexes. This paper evaluates the effect of a local support on the distribution of mechanical and electrical components. This investigation indicates that a support has important influence on the distribution of mechanical and electrical components rather than a cylinder with ignoring the effect of the supports. Obtained results using present method at regions that are adequate far from two ends of the cylinder can be compared with previous results (plane elasticity and one dimensional first order shear deformation theories).

Unsteady Temperature Distributions in a Semi-infinite Hollow Circular Cylinder of Functionally Graded Materials

  • Kim, Kui-Seob;NODA, Naotake
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.46-55
    • /
    • 2001
  • A Green's function approach based on the laminate theory is adopted to obtain the unsteady temperature distributions in a semi-infinite hollow circular cylinder made of functionally graded materials (FGMs). The transient heat conduction equation based on the laminate theory is formulated into an eigenvalue problem for each layer by using the eigenfunction expansion theory and the separation of variables. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the unsteady temperature distributions. Numerical calculations are carried out for the semi-infinite hollow circular FGM cylinder subjected to partially heated loads, and the numerical results are shown in figures.

  • PDF

Axisymmetrical bending of single- and multi-span functionally graded hollow cylinders

  • Bian, Z.G.;Wang, Y.H.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.355-371
    • /
    • 2013
  • Single- and multi-span orthotropic functionally graded hollow cylinders subjected to axisymmetrical bending are investigated on the basis of a unified shear deformable shell theory, in which the transverse displacement is expressed by means of a general shape function. To approach the through-thickness inhomogeneity of the hollow cylinder, a laminated model is employed. The shape function therefore shall be determined for each fictitious layer. To improve the computational efficiency, we resort to a transfer matrix method. Based on the principle of minimum potential energy, equilibrium equations are established, which are then solved analytically using the transfer matrix method for arbitrary boundary conditions. Numerical comparisons among a third-order shear deformable shell theory, an exact elastic theory and the present theory are provided for a simply supported hollow cylinder, from which the present theory turns out to be superior in stress estimation. Distributions of displacements and stresses in single- and three-span hollow cylinders with different boundary conditions are also illustrated in numerical examples.

Dynamic Stability of a Flexible Cylinder Subjected to Inviscid Flow in a Coaxial Cylindrical Duct Based on Spectral Method (스펙트럼 배치방법에 의한 원형도관내의 비점성유동장에 놓인 유연성 실린더의 안정성 분석)

  • Sim, Woo-Gun;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.212-224
    • /
    • 1994
  • A numerical method has been developed for studying the dynamics of a flexible cylinder in a coaxial cylindrical duct, immersed in inviscid flow. The unsteady inviscid fluid-dynamic force acting on the oscillating cylinder has been estimated more rigorously by means of a spectral collocation method without simplification of governing equations. This numerical approach is applicable to the system haying wider annular gap and/or shorter length of cylinder as compared to existing potential theory. The governing equation of the unsteady flow was obtained from Laplace equation. The equation of cylinder motion coupled with the fluid motion was discretized by Galerkin's method, from which the dynamic behaviour of the system has been evaluated. The effect of the length of the cylinder and the annular gap on the critical flour velocity, where the system loses stability by buckling, was investigated. To validate the numerical method, the potential flow theory developed by Hobson based on thin film approximation has been improved. Typical results of the present numerical theory on the dynamics and stability of the system are compared with those of available existing theory and the present approximate results. Good agreement was found between the results. It was also found that a nondimensional critical flow velocity becomes larger as increasing the annular gap and decreasing the length of cylinder.

  • PDF

Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory

  • Loghman, Abbas;Faegh, Reza K.;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.533-547
    • /
    • 2018
  • In this paper the time-dependent creep analysis of a thick-walled FG cylinder with finite length subjected to axisymmetric mechanical and thermal loads are presented. First order shear deformation theory (FSDT) is used for description of displacement components. Inner and outer temperatures and outer pressure are considered as thermo-mechanical loadings. Both thermal and mechanical loadings are assumed variable along the axial direction using the sinusoidal distribution. To find temperature distribution, two dimensional heat transfer equation is solved using the required boundary conditions. The energy method and Euler equations are employed to reach final governing equations of the cylinder. After determination of elastic stresses and strains, the creep analysis can be performed based on the Yang method. The results of this research indicate that the boundaries have important effects on the responses of the cylinder. The effect of important parameters of this analysis such as variable loading, non-homogeneous index of functionally graded materials and time of creep is studied on the behaviors of the cylinder.

A study on the wave forces acting on the multiple plils of oceanic circular cylinder (해양원주 구조물에 작용하는 파력에 관한 연구)

  • 오세욱;문병형;이승휘
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.28-38
    • /
    • 1987
  • Experimental studies are conducted for the wave forces acting on the vertically mounted circular piles in the waves. Two-three-cylinder arrays are equally spaced and the spacings(S/D) as well as the incident angles of various waves are changed to study their separate effects on the wave forces. The numerical results based on the diffraction theory are in good agreement with the experimental results, and the diffraction theory well predicts the trend of the wave forces when the spacings and the incident angles are changed.

  • PDF

Analysis for Lubrication between a Rotating Cylinder and a Translating Plate (회전하는 원통과 병진운동하는 평판사이의 윤활유동해석)

  • 정호열;정재택
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.411-417
    • /
    • 2002
  • Two dimensional slow viscous flow between a rotating cylinder and a translating plate is investigated using Stokes' approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns are shown and the pressure distribution in the flow field is determined. By integrating the stress distributions on the cylinder, the farce and the moment exerted on the cylinder are calculated. The flow rate through the gap between the cylinder and the plate is also determined as a function of the distance between the cylinder and the plate. Special attention is directed to the case of very small distance between the cylinder and the plate concerned with the lubrication theory and the minimum pressure is calculated to explain a possible cavitation.

Second Order Effect Induced by a Forced Heaving

  • Kim, Won-Joong;Kwon, Sun-Hong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.12-21
    • /
    • 2016
  • In this paper, the $2^{nd}$ order hydrodynamic force effect of heaving submerged circular cylinder is considered, with the linear potential theory. Boundary value problem (BVP) is expanded up to the $2^{nd}$ order by using of the perturbation method and the $2^{nd}$ order velocity potential is calculated by means of integral equation technique using the classical Green's function expressed in cylindrical coordinates. The method of solving BVP is based on eigenfunction expansions. With different cylinder heights and heaving frequencies, graphical results are presented. As a result of the study, the cause of oscillatory force pattern is analyzed with the occurrence of negative added mass when a top of the cylinder gets closer to the free surface.

Active Noise Control In a Cylindrical Cavity (원통형 밀폐공간 내부의 능동소음제어)

  • Lee, Ho-Jun;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2302-2312
    • /
    • 2000
  • An active control of the transmission of noise through an aircraft fuselage is investigated numerically. A cylinder-cavity system was used as a model for this study. The fuselage is modeled as a fi nite, thin shel cylinder with constant thickness. The sound field generated by an exterior monopole source is transmitted into the cavity through the cylinder. Point force actuators on the cylinder are driven by error sensor that is placed in 3D cavity. Modal coupling theory is used to formulate the numerical models and describe the system behavior. Minimization of the acoustic potential energy in the fuselage is carried out as a performance index. Continuous parameter genetic algorithm is used to search the optimal actuator position and both results are compared.

Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells

  • Ahmadi, Isa;Najafi, Mahsa
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1193-1214
    • /
    • 2016
  • In this paper, the 3D stress state and inter-laminar stresses in a rotating thin laminated cylinder shell are studied. The thickness of the cylinder is supposed to be thin and it is made of laminated composite material and can have general layer stacking. The governing equations of the cylindrical shell are obtained by employing the Layerwise theory (LWT). The effect of rotation is considered as rotational body force which is induced due to the rotation of the cylinder about its axis. The Layerwise theory (LWT), is used to discrete the partial differential equations of the problem to ordinary ones, in terms of the displacements of the mathematical layers. By applying the Free boundary conditions the solution of the governing equations is completed and the stress state, the inter-laminar stresses, and the edge effect in the rotating cylindrical shells are investigated in the numerical results. To verify the results, LWT solution is compared with the results of the FEM solution and good agreements are achieved. The inter-laminar normal and shear stresses in rotating cylinder are studied and effects of layer stacking and angular velocity is investigated in the numerical results.