• Title/Summary/Keyword: Cylindrocarpon destructans

Search Result 73, Processing Time 0.021 seconds

Virulence Assays and Genetic Reclassification to Assess the Pathogenicity of Cylindrocarpon destructans Isolated from Peony in Ginseng (작약에서 분리한 Cylindrocarpon destructans의 인삼에 대한 병원성 검정 및 분류학적 고찰)

  • Seo, Mun Won;Song, Jeong Young;Kang, Kwang Hoon;Park, Soo Yeon;Kim, Sun Ick;Kim, Hong Gi
    • The Korean Journal of Mycology
    • /
    • v.45 no.2
    • /
    • pp.132-138
    • /
    • 2017
  • To obtain useful data on root rot in Korean ginseng, we performed phylogenetic analysis and pathogenicity test for Cylindrocarpon destructans isolated from peony. Cylindrocarpon destructans isolates from peony were proven to cause ginseng root rot. The isolate KACC44663 was identified as Ilyonectria robusta under the new classification system, which belongs to the I. radicicola species complex. This is the first report of the pathogenic isolate, which was isolated from another host plant, but not ginseng, that can cause root rot disease on ginseng in Korea.

Development of a Selective Medium for the Fungal Pathogen Cylindrocarpon destructans Using Radicicol

  • Kang, Yunhee;Lee, Seung-Ho;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.432-436
    • /
    • 2014
  • The soil-borne ascomycete fungus Cylindrocarpon destructans causes ginseng root rot disease and produces various secondary metabolites such as brefeldin A and radicicol. The slow growth of this fungus compared with other plant pathogenic and saprophytic fungi in soil disturbs isolation of this fungus from soil and infected ginseng. In this study, we developed a selective medium for C. destructans using radicicol produced by this fungus. Supplementing 50 mg/L of radicicol to medium inhibited the mycelia growth of other fungi including Botrytis cinerea, Rhizoctonia solani and Alternaria panax, but did not affect the growth of C. destructans. In addition, conidia germination of other fungal species except for C. destructans was inhibited in submerged culture supplemented with radicicol. This medium provides a very efficient tool for isolating C. destructans and also can be used as an enrichment medium for this fungus.

Population Variations of Cylindrocarpon destructans Causing Root Rot of Ginseng and Soil Microbes in the Soil with Various Moisture Contents (토양수분 함량에 따른 인삼 뿌리썩음병균 Cylindrocarpon destructans 및 토양미생물의 밀도 변화)

  • 박규진;유연현;오승환
    • Korean Journal Plant Pathology
    • /
    • v.13 no.2
    • /
    • pp.100-104
    • /
    • 1997
  • Influence of the moisture content in soils was examined on population variations of soil microbes, including Cylindrocarpon destructans causing root rot of ginseng, in vivo and under the field condition. Fungal populations decreased in soils treated with various moisture contents in vivo as days after the treatment in creased, but there was not a significant difference in the population among other treatments except 135% moisture content (flooding) at 15 weeks after the treatment. In flooded soils populations of total fungi and C. destructans were reduced to 1/10 and 1/50 of initial populations, respectively. There was, however, a little difference in the population of total bacteria or Actinomycetes between before and at 15 weeks after flooding. On the other hand, population variations of bacteria and Actinomycetes were much greater than those of fungi at different intervals after the moisture treatment. Variations of microbial populations in flooded soils under the field condition were similar to those in vivo. Especially, populations of Fusarium and pectolytic bacteria in flooded soils were reduced to 1/100 of populations in nonflooded soils at 170 days after treatment.

  • PDF

Chlamydospore Induction from Conidia of Cylindrocarpon destructans Isolated from Ginseng in Korea

  • Kang, Yunhee;Kim, Mi Ran;Kim, Ki Hong;Lee, Jungkwan;Lee, Seung-Ho
    • Mycobiology
    • /
    • v.44 no.1
    • /
    • pp.63-65
    • /
    • 2016
  • Cylindrocarpon destructans causes root rot disease in ginseng and can survive for a long time, producing chlamydospores. We optimized conditions to induce chlamydospore production from the conidia of C. destructans, isolated from Korean ginseng. This will provide the basis for testing the efficacy of control agents targeting these chlamydospores.

Diagnosis of Cylindrocarpon destructans Using Enzyme-Linked Immunosorbent Assay

  • Li, Taiying;Ji, Sungyeon;Jung, Boknam;Kim, Bo Yeon;Lee, Kwang Sik;Seo, Mun Won;Lee, Sung Woo;Lee, Jungkwan;Lee, Seung-Ho
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.131-135
    • /
    • 2019
  • Cylindrocarpon destructans causes ginseng root rot and produces radicicol that has an antifungal effect. In this study, we developed a method to detect this fungus using enzyme-linked immunosorbent assay (ELISA). Secreted proteins of C. destructans were used as antigens to obtain C. destructans-specific IgG from mouse. Out of 318 monoclonal antibodies generated from mouse, two antibodies (Cd7-2-2 and Cd7-2-10) showed highest specificity and sensitivity. Indirect ELISA using both antigens successfully detected C. destructans in soils, but direct ELISA using IgG conjugated with horseradish peroxidase failed to detect antigens in soils. The indirect ELISA developed here can efficiently detect the fungus and help manage ginseng root rot disease in fields.

Genetic Diversity of Korean Cylindrocarpon destructans Based on Virulence Aassay and RAPD Analysis (병원성 검정 및 RAPD 분석에 의한 국내 인삼뿌리썩음병균(Cylindrocarpon destructans)의 유전적 다양성)

  • Seo, Mun-Won;Kim, Sun-Ick;Song, Jeong-Young;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.39 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • Ginseng root rot caused by Cylindrocarpon destructans is one of the most destructive diseases of ginseng(Panax ginseng). We analyzed the features of the species through pathogenicity test and genetic diversity analysis of C. destructans in Korea, for its application as basic data to attempt for effective control. C. destructans isolated from rotted ginseng roots exhibited a variety of colonial colors on media. It was assumed that there may exist genetic diversity in the population by the diversity of pathogenicity among isolates observed when artificially inoculated into ginseng roots. Pathogenicity tests using ex vivo wound inoculation with agar mixture inoculation on ginseng roots were performed similar results as were observed appear to be useful for rapid pathogen inspection. According to RAPD analysis results, Korean C. destructans isolates formed a single genetic group which can be distinguished readily from closely related other fungi. C. destructans group was divided into two small groups. Therefore, we were able to confirm pathogenicity and genetic difference between the isolates in each of the groups of the pathogen.

Effect of Carbon and Nitrogen Sources on the Mycelial Growth and Sporulation of Cylindrocarpon destructans Causing Root Rot of Panax ginseng (인삼 뿌리썩음병균 Cylindrocarpon destructans의 균사생육과 포자형성에 미치는 탄소원가 질소원의 영향)

  • 조대휘;유연현;오승환;이호자
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.30-36
    • /
    • 1997
  • The effects of carbon and nitrogen sources on the mycelial growth and sporulation of microconidia and chlamydospores of five isolates of Cylindrocarpon destructans (Zinssm.) Scholten causing root rot of Panax ginseng were studied. For the carbon sources, fructose, glucose, maltose, and sucrose in Czapek-Dox broth showed good mycelial growth of 178∼201 mg in dry weight compared with 64 mg of the control. The best carbon sources tested for conidial formation were sucrose and maltose with 2.75 and 3.03 log conidia/ml, respectively. For the nitrogen sources, aspartic acid, NaNO3, KNO3, arginine, threonine, and leucine increased mycelial growth of the fungi to 208∼231 mg in dry weight without significant difference (p=0.05) among them. Meanwhile the growth with cystine was poor (26.3 mg dry weight), and no conidium and chlamydospore were formed. Maximum microconidial formation was observed in the media with NaNO3 and KNO3 as 3.37 and 3.35 log conidia/ml, and for the chlamydospore formation the (NH4)2SO4-containing medium and the nitrogen-absent medium were the best as 3.40 and 3.57 log chlamydospores/ml, respectively. No conidium was found in the medium without nitrogen sources, in which chlamydospore formation increased 6 times more than in the nitrogen-amended medium. However, deletion of carbon source in the medium did not affect on the formation of conidia and chlamydospores of C. destructans.

  • PDF

Effect of physical and chemical Factors on the Formation and Germination of Chlamydospore of Cylindrocarpon destructans Causing Root Rot of Panax ginseng (인삼 뿌리썩음병균(Cylindrocarpon destructans) 후막포자의 형성 및 발아에 영향을 주는 물리화학적 요인)

  • 유성준;조진웅;조재성;유승헌
    • Korean Journal Plant Pathology
    • /
    • v.12 no.4
    • /
    • pp.422-427
    • /
    • 1996
  • 인삼뿌리썩음병균(Cylindrocarpon destructans)후막 포자의 형성은 CD(Czapek`s dox broth)와 SNY(Spezieller Nahrtoffarmer yeast extract broth)배지에서 진탕배양(2$0^{\circ}C$, 120 rpm)하면 양호하였다. 특히 CD배지에서 2$0^{\circ}C$로 30일간 진탕배양하면 5.99 log 후막포자/ml로 형성되었다. 후막포자의 발아율은 12.9~23.3%로 CD배지와 SNY배지에서 좋았으며 발아적온은 5~1$0^{\circ}C$였고, 최적 pH는 6이었다. 그러나 2$0^{\circ}C$이상에서는 전혀 발아하지 않았으며 pH 7.0이상에서는 발아율이 급속히 저하되었다. 인삼추출물 3%, GA 10 ppm, IAA 10 ppm, NOVOZYM\ulcorner234 20 ppm을 처리 할 경우 대조구에 비해 발아율이 증가하였다. 특히 NOVOZYM\ulcorner234 20 ppm 처리구는 발아율이 무처리에 비해 2배 증가하였다. CD배지(pH5)에 NOVOZYM\ulcorner234 20 ppm과 GA 10 ppm을 조합처리하고 5$^{\circ}C$로 정치배양 할 때 후막포자의 발아율은 49.4%로 가장 높았다.

  • PDF

The Effect of Fungicides on Mycelial Growth and Conidial Germination of the Ginseng Root Rot Fungus, Cylindrocarpon destructans

  • Shin, Jong-Hwan;Fu, Teng;Park, Kyeong Hun;Kim, Kyoung Su
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.220-225
    • /
    • 2017
  • Ginseng root rot caused by Cylindrocarpon destructans is the most destructive disease of ginseng. Six different fungicides (thiophanate-methyl, benomyl, prochloraz, mancozeb, azoxystrobin, and iprodione) were selected to evaluate the inhibitory effect on the mycelial growth and conidial germination of C. destructans isolates. Benomyl and prochloraz were found to be the most effective fungicides in inhibiting mycelial growth of all tested isolates, showing 64.7% to 100% inhibition at a concentration of $10{\mu}g/mL$, whereas thiophanate-methyl was the least effective fungicide, showing less than 50% inhibition even at a higher concentration of $100{\mu}g/mL$. The tested fungicides exhibited less than 20% inhibition of conidium germination at concentrations of 0.01, 0.1, and $1{\mu}g/mL$. However, the inhibition effect of mancozeb on condium germination of C. destructans was significantly increased to 92% to 99% at a higher concentration of $100{\mu}g/mL$, while the others still showed no higher than 30% inhibition.

Root-Rot Development of 2-Year old Ginseng (Panax ginseng C.A. Meyer) Caused by Cylindrocarpon destructans (Zinssm.) Scholten in the Continuous Cultivation Field (Cylindrocarpon destructans (Zinssm.) Scholten에 의한 연작지 2년근 인삼의 근부병 발병 특성)

  • 조대휘;박규진
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.175-180
    • /
    • 1995
  • The disease development of root-rot [pathogen:Cylindrocarpon destruction (Zinssm.) Scholten] occurred in 2-year old ginseng (Panax ginseng C.A. Meyer) was investigated in the continuous (the first cultivation: 1978∼1982, 2nd cultivation: 1990∼1993 and abolished in 1993 due to replanting problem) and replanted cultivation (period of cultivation: 1980∼1984). In the continuous cultivation, incidences of root-rot were 0.7% on May 3, 48.6% on May 24, and 95.8% on June 14, respectively. In the replanted cultivation, no symptom was observed on May 3 and disease incidence was generally lower compared with the continuous cultivation. On the aerial part of the ginseng infected by C. desiccates, the end and/or margin of leaves were changed to dark reddish color that appeared for behind the root-rot symptom. In this field, the longitudinal growth of lateral root was more inhibited than in the case of the replanted cultivation by C. destmctans. The inhibition rate of rootlet growth was 37.3% in the continuous cultivation as compared with that of replanted cultivation at June 14. Though lesions of root-rot were formed all over the roots, 61.2% of the lesions was positioned within 6 cm under the rhizome. Key words Panax ginseng, Cylindrocarpon destmtan, root-rot of ginseng, replanting problem of ginseng.

  • PDF