• Title/Summary/Keyword: Cytochromes P450

Search Result 10, Processing Time 0.025 seconds

Sex-related Differences in Rat Hepatic Cytochromes P450 Expression Following Treatment with Phenobarbital or 3-Methylcholanthrene

  • Lee, Yoon-Sook;Park, Sang-Shin;Kim, Nak-Doo
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.78-86
    • /
    • 1992
  • The induction of hepatic cytochromes P450 and metabolic effects have been examined in male and female Sprague-Dawley rats following treatment with either phenobarbital or 3-methylcholanthrene. Hepatic cytochrome P450 levels were higher in males than in females by ~40%. Treatment of male and female rats with phenobarbital or 3-methylcholanthrene resulted in an ~1.6 and 2-fold increase, respectively, in heptic microsomal cytochrome P450 levels in both sexes, relative to untreated animals. Immunoblot analyses were performed to compare sex-related changes in P450 levels. Hepatic P45IIB1 levels in males were greater than those in females following phenobarbital treatment. 3-Methylcholanthrene-induced male hepatic microsomes exhibited greater levels of P450 females failed to exhibit a band. Mab PCN 2-13-1 against P-45-IIIA recognized an intense in uninduced microsomes from female rats. The levels of P450IIIA in males were increased 2 to 3-fold following treatment with phenobarbital, while the increase of IIIA levels in females by phenobarbital was minimal, as monitored by immunoblot analysis. Solid phase radiommunoassay using monoclonal antibodies supported the results of immunoblot analysis. Phenobarbital treatment caused a 6.5-fold increase in the monoclonal iantibody binding to IIBI in males, whereas treatment of females with phenobarbital resulted of IA levels by 3-methylcholanthrene was also greater in females than in males (10-vs. 8-fold) although the levels of induced IA were comparable inboth sexes, as assessed by radiommunoassay. Radioimmunoassay also showed that hepatic IIEI level was 1.5-fold higher in males than in females and that either phenobarbital or 3-methylcholanthrene treatment caused 80% to 40% decrease in IIEL levels, relative to control, in both sexes. Sex-related metabolic activities were examined in hepatic microsomes. Hexobarbital hydroxylase activity was 2-to 3-fold higher in uninduced microsomes from males than that from females. This hydroxylase activity was increased 2-and 3-fold in males and females, respectively, following phenobarbital treatment, as compared to controls. Addition females produced 64% and 84% inhibition of hexobarbital oxidation, respectively. Aryl hydrocarbon hydroxylase activity was increased -12 and 26-fold in males and females respectively. Following phenobarbital treatment, as compared to controls. Addition of anti-P450IIB1 antibody to phenobarbital-induced hepatic microsomes from males and females produced 64% and 84% inhibition of hexobarbital oxidation, respectively. Aryl hydrocarbon hydroxylase activity was increased -12 and 26 fold in males and females, respectively, following 3-methylcholanthrene treatment relative to controls. The anti-P-450IA antibody inhibitable rate of aryl hydrocarbon hydroxylase activity was comparable in both sexes following 3-methylcholanthrene treatment relative to controls. The anti-P450LA antibody inhibitable rate of aryl hydrocarbon hydroxylase activity was comparable in both sexes following 3-methylcholanthrene treatment (-70%). These results demonstrate that levels of hepatic P450IIB1 or P450IA are greater in male than in female for untreated, phenobarbital-or-3-methylcholanthrene treated rats. In addition, the relative for untreated phenobarbital-or 3-methylcholanthrene treated rats. In addition, the relative increase of phenobarbital-or 3-methylcholanthrene treated rats. In addition, the relative increase of phenobarbital-or 3-methylcholanthrene treated rats. In addition, the relative increase of P450IIB1 or IA phenobarbital or 3-methylcholanthrene is more significant in females.

  • PDF

ROLES OF HUMAN LIVER CYTOCHROMES P450 3A4 AND 1A2 IN THE OXIDATION OF MYRISTICIN

  • Yun, Chul-Ho;Lee, Hye-Suk;Lee, Hee-Yong;Yim, Sung-Kun;Kim, Keon-Hee;Yea, Sung-Su
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.137.1-137.1
    • /
    • 2003
  • Myristicin, 1-allyl-3, 4-methylenedioxy-5-methoxybenzene, is a naturally occurring alkenylbenzene compound. It is found in nutmag, mace, parsley, carrot, black pepper, many natural oils and flavoring agents. The aim of this work was to identify the form(s) of human liver cytochrome P450 (P450) involved in the hepatic transformation of myristicin to its major metabolite, 5-allyl-1-methoxy-2, 3-dihydroxybenzene (M1). (omitted)

  • PDF

Temperature Effect on the Functional Expression of Human Cytochromes P450 2A6 and 2E1 in Escherichia coli

  • Yim Sung-Kun;Ahn Taeho;Jung Heung-Chae;Pan Jae-Gu;Yun Chul-Ho
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.433-437
    • /
    • 2005
  • Human cytochromes P450 (GYP) 2A6 and 2E1 are of great interest because of their important roles in the oxidation of numerous drugs and carcinogens. Bacterial expression systems, especially Escherichia coli cells, have been widely used for the production of various GYP enzymes in order to obtain high yield of proteins. The expression methods usually employ longer culture time (30-72 h) at lower temperature (usually under $30^{\circ}C$). Expression levels of GYPs 2A6 and 2E1 at $37^{\circ}C$ were compared to those at $28^{\circ}C$, which is a usual temperature used in most bacterial expression systems for human GYP expression. Within 18 h the expression levels of GYPs 2A6 and 2E1 reached up to 360 and 560 nmol per liter culture at $37^{\circ}C$, respectively, which are compatible with those of 36 h culture at $28^{\circ}C$. The activities of GYPs expressed at $37^{\circ}C$ were also comparable to those expressed at $28^{\circ}C$. The present over-expression system can be useful for rapid production of large amounts of active human GYPs 2A6 and 2E1 in E. coli.

In-silico and In-vitro based studies of Streptomyces peucetius CYP107N3 for oleic acid epoxidation

  • Bhattarai, Saurabh;Niraula, Narayan Prasad;Sohng, Jae Kyung;Oh, Tae-Jin
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.736-741
    • /
    • 2012
  • Certain members of the cytochromes P450 superfamily metabolize polyunsaturated long-chain fatty acids to several classes of oxygenated metabolites. An approach based on in silico analysis predicted that Streptomyces peucetius CYP107N3 might be a fatty acid-metabolizing enzyme, showing high homology with epoxidase enzymes. Homology modeling and docking studies of CYP107N3 showed that oleic acid can fit directly into the active site pocket of the double bond of oleic acid within optimum distance of $4.6{\AA}$ from the Fe. In order to confirm the epoxidation activity proposed by in silico analysis, a gene coding CYP107N3 was expressed in Escherichia coli. The purified CYP107N3 was shown to catalyze $C_9-C_{10}$ epoxidation of oleic acid in vitro to 9,10-epoxy stearic acid confirmed by ESI-MS, HPLC-MS and GC-MS spectral analysis.

Inhibitory Effects of 12 Ginsenosides on the Activities of Seven Cytochromes P450 in Human Liver Microsomes

  • Jo, Jung Jae;Shrestha, Riya;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.106-110
    • /
    • 2016
  • Ginseng, a traditional herbal drug, has been used in Eastern Asia for more than 2000 years. Various ginsenosides, which are the major bioactive components of ginseng products, have been shown to exert numerous beneficial effects on the human body when co-administered with drugs. However, this may give rise to ginsenoside-drug interactions, which is an important research consideration. In this study, acassette assay was performed the inhibitory effects of 12 ginsenosides on seven cytochrome P450 (CYP) isoforms in human liver microsomes (HLMs) using LC-MS/MS to predict the herb-drug interaction. After incubation of the 12 ginsenosides with seven cocktail CYP probes, the generated specific metabolites were quantified by LC-MS/MS to determine their activities. Ginsenoside Rb1 and F2 showed strong selective inhibitory effect on CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP2B6-catalyzed bupropion hydroxylation, respectively. Ginsenosides Rd showed weak inhibitory effect on the activities of CYP2B6, 2C9, 2C19, 2D6, 3A4, and compound K, while ginsenoside Rg3 showed weak inhibitory effects on CYP2B6. Other ginsenosides, Rc, Rf, Rg1, Rh1, Rf, and Re did not show significant inhibitory effects on the activities of the seven CYPs in HLM. Owing to the poor absorption of ginsenosides after oral administration in vivo, ginsenosides may not have significant side effects caused by interaction with other drugs.

Studies on Synthetic 1,2-Benzothiazine Anti-inflammatory Agents: Pharmacological Effect and the Expression of Xenobiotic-metabolizing Enzymes (1,2-Benzothiazine계열 새로운 항염진통제에 대한 약리작용 및 대사효소발현 유형의 연구)

  • 김상건;조주연;권순경;이은방
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.300-307
    • /
    • 2000
  • Expression of xenobiotic-metabolizing enzymes can be altered by xenobiotics, which represents changes in the production of reactive metabolic intermediates as well as toxicities in tissues. Metabolic intermediates derived from xenobiotics are considered to produce the reactive oxygen species including drug free radicals and hydroxyl free radicals, which would be ultimately responsible for drug-induced toxicities. The effects of 1,2-benzothiazine anti-inflammatory agents on the expression of xenobiotic-metabolizing enzymes including major cytochrome P450s, microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST) were studied in the liver with the aim of providing the part of information on potential production of reactive metabolites and hepatotoxicity by the agents. The synthetic compounds 24, 36 and 39 exhibited anti-inflammatory effects in rats as assessed by the Randall-Selitto method. The anti-inflammatory effect was detected as early as at 30 min after gavaging the agents with the ED5O being noted at 80 mg/kg, which was comparable to that of ibuprofen. Treatment of rats with each compound (100 mg/kg, 3d) resulted in no significant induction in the immunochemically-detectable cytochromes P45O 1A1/2, P450 2B1/2, P45O 2 Cl1 and P45O 2El. Changes in the mEN expression were also minimal, as evidenced by both Western blot and Northern blot analyses. Hepatic GST expression was slightly increased by the agents: GST Ya protein and mRNA expression was ~1.5-fold increased after treatment with compounds 24 and 39, whereas GST Yb1/2 and Yc1/2 mRNA levels were elevated 2- to 3-fold. In summary the effects of the synthetic 1,2-benzothiazines on the expression of major P45O, mEH and G57 were not significant, providing evidence that metabolic activation of the agents, potential drug interaction and hepatotoxicity would be minimal.

  • PDF

Spatial protein expression of Panax ginseng by in-depth proteomic analysis for ginsenoside biosynthesis and transportation

  • Li, Xiaoying;Cheng, Xianhui;Liao, Baosheng;Xu, Jiang;Han, Xu;Zhang, Jinbo;Lin, Zhiwei;Hu, Lianghai
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.58-65
    • /
    • 2021
  • Background: Panax ginseng, as one of the most widely used herbal medicines worldwide, has been studied comprehensively in terms of the chemical components and pharmacology. The proteins from ginseng are also of great importance for both nutrition value and the mechanism of secondary metabolites. However, the proteomic studies are less reported in the absence of the genome information. With the completion of ginseng genome sequencing, the proteome profiling has become available for the functional study of ginseng protein components. Methods: We optimized the protein extraction process systematically by using SDS-PAGE and one-dimensional liquid chromatography mass spectrometry. The extracted proteins were then analyzed by two-dimensional chromatography separation and cutting-edge mass spectrometry technique. Results: A total of 2,732 and 3,608 proteins were identified from ginseng root and cauline leaf, respectively, which was the largest data set reported so far. Only around 50% protein overlapped between the cauline leaf and root tissue parts because of the function assignment for plant growing. Further gene ontology and KEGG pathway revealed the distinguish difference between ginseng root and leaf, which accounts for the photosynthesis and metabolic process. With in-deep analysis of functional proteins related to ginsenoside synthesis, we interestingly found the cytochrome P450 and UDP-glycosyltransferase expression extensively in cauline leaf but not in the root, indicating that the post glucoside synthesis of ginsenosides might be carried out when growing and then transported to the root at withering. Conclusion: The systematically proteome analysis of Panax ginseng will provide us comprehensive understanding of ginsenoside synthesis and guidance for artificial cultivation.

The Effects of Isopropyl 2-(1,3-dithioetane-2-ylidene)-2-[N-(4-methyl-thiazol-2-yl)carbamoyl]acetate (YH439) on Potentiated Carbon Tetrachloride Hepatotoxicity (상승적 화학적 간독성에 미치는 YH439의 영향)

  • Kim, Sang-Geon;Cho, Joo-Youn
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.407-416
    • /
    • 1996
  • The reactive intermediates formed during the metabolism of therapeutic agents, toxicants and carcinogens by cytochromes P450 are frequently capable of covalently binding to tissue macromolecules and causing tissue damage. It has been shown that YH439, a congener of malotilate, is effective in suppressing hepatic P450 2E1 expression. The present study was designed to further establish the mechanistic basis of YH439 protection against toxicant by assessing its effects against chemical-mediated potentiated hepatotoxicity. Retinoyl palmitate (Vit-A) pretreatment of rats for 7 days substantially enhanced carbon tetrachloride hepatotoxicity, as supported by an ${\sim}5-fold$ increase in serum alanine aminotransferase (ALT) activity, as compared to $CCl_4$ treatment alone. The elevation of ALT activity due to Vit-A was completely blocked by the treatment of $GdCl_3$ a selective inhibitor of Kupffer cell activity. Concomitant pretreatment of rats with both YH439 and Vit-A resulted in a 94% decrease in Vit-A-potentiated $CCl_4$ hepatotoxicity. YH439 was also effective against propyl sulfide-potentiated $CCl_4-induced$ hepatotoxicity. Whereas propyl sulfide (50 mg/kg, 7d) enhanced $CCl_4-induced$ hepatotoxicity by >5-fold, relative to $CCl_4$ treatment alone, concomitant treatment of animals with both propyl sulfide and YH439 at the doses of 100 and 200 mg/kg prevented propyl sulfide-potentiated $CCl_4$ hepatotoxicity by 35% and 90%, respectively. Allyl sulfide, a suppressant of hepatic P450 2E1 expression, completely blocked the propyl sulfide-enhanced hepatotoxicity, indicating that propyl sulfide potentiation of $CCl_4$ hepatotoxicity was highly associated with the expression of P450 2E1 and that YH439 blocked the propyl sulfide-enhanced hepatotoxicity through modulation of P450 2E1 levels. Propyl sulfide- and $CCl_4-induced$ stimulation of lipid peroxidation was also suppressed by YH439 in a dose-related manner, as supported by decreases in malonedialdehyde production. The role of P450 2E1 induction in the potentiation of $CCl_4$ toxicity and the effects of YH439 were further evaluated using pyridine as a P450 2E1 inducer. Pyridine pretreatment substantially enhanced the $CCl_4$ hepatotoicity by 23-fold, relative to $CCl_4$ alone. YH439, however, failed to reduce the pyridine-potentiated toxicity, suggesting that the other form(s) of cytochroms P450 inducible by pyridine, but not suppressible by YH439 treatment, may play a role in potentiating $CCl_4-induced$ hepatotoxicity. YH439 was capable of blocking cadmium chloride-induced liver toxicity in mice. These results demonstrated that YH439 efficiently blocks Vit-A-enhanced hepatotoxiciy through Kupffer cell inactivation and that the suppression of P450 2E1 expression by YH439 is highly associated with blocking of propyl sulfide-mediated hepatotoxicity.

  • PDF

Naturally-Occurring Glucosinolates, Glucoraphanin and Glucoerucin, are Antagonists to Aryl Hydrocarbon Receptor as Their Chemopreventive Potency

  • Razis, Ahmad Faizal Abdull;Noor, Noramaliza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5801-5805
    • /
    • 2015
  • As a cytosolic transcription factor, the aryl hydrocarbon (Ah) receptor is involved in several pathophysiological events leading to immunosuppression and cancer; hence antagonists of the Ah receptor may possess chemoprevention properties. It is known to modulate carcinogen-metabolising enzymes, for instance the CYP1 family of cytochromes P450 and quinone reductase, both important in the biotransformation of many chemical carcinogens via regulating phase I and phase II enzyme systems. Utilising chemically-activated luciferase expression (CALUX) assay it was revealed that intact glucosinolates, glucoraphanin and glucoerucin, isolated from Brassica oleracea L. var. acephala sabellica and Eruca sativa ripe seeds, respectively, are such antagonists. Both glucosinolates were poor ligands for the Ah receptor; however, they effectively antagonised activation of the receptor by the avid ligand benzo[a]pyrene. Indeed, intact glucosinolate glucoraphanin was a more potent antagonist to the receptor than glucoerucin. It can be concluded that both glucosinolates effectively act as antagonists for the Ah receptor, and this may contribute to their established chemoprevention potency.

GENETIC POLYMORPHISMS AND CHROMOSOMAL INSTABILITY TO LUNG CANCER IN THE KOREAN POPULATIONS

  • Eom, Mi-Ok;Oh, Hye-Young;Min, Soo-Jin;Kim, Jong-Won;Park, Mi-Sun;Han, Eui-Sik;Jung, Hai-Kwan;Jong, Won-Sang;Kim, Ok-Hee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.191-192
    • /
    • 2001
  • Although the incidence rates of gastric cancer and liver cancer, the most common cancers in Korea, are tending decrease, lung cancer is on the increase every year as cause of cancer death as well as incidence rate in Korea. And cigarette smoke is believed to be responsible for 90% of lung cancer. Many investigators have reported an association between genetic polymorphism of cytochromes P-450 (CYPs) or glutathoine S-transferase (GSTs) and susceptibility to lung cancer.(omitted)

  • PDF