• Title/Summary/Keyword: DC Power Supply System

Search Result 492, Processing Time 0.041 seconds

A Study on Battery Charger Reliability Improvement of Nuclear Power Plants DC Distribution System (원자력발전소 직류 전력계통의 충전기 신뢰도 향상방안 연구)

  • Lim, Hyuk-Soon;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.24-28
    • /
    • 2010
  • The nuclear power Plant onsite AC electrical power sources are required to supply power to the engineering safety facility buses if the offsite power source is lost. Typically, Diesel Generators are used as the onsite power source. The 125 VAC buses are part of the onsite Class 1E AC and DC electrical power distribution system. The DC power distribution system ensure the availability of DC electrical power for system required to shutdown the reactor and maintain it in a safety condition after an anticipated operational occurrence or a postulated Design Base Accident. Recently, onsite DC power supply system trip occurs the loss of system function. To obtain the performance such as reliability and availability, we analyzed the cause of battery charger trip and described the improvement of DC power supply system reliability. Finally, we provide reliability performance criteria of charger in order to ensure the probabilistic goals for the safety of the nuclear power plants.

Comparative Study on 220V AC Feed System and 300V DC Feed System for Internet Data Centers

  • Kim, Hyo-Sung
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.157-163
    • /
    • 2012
  • Internet Data Centers (IDCs), which are essential facilities in the modern IT industry, typically have scores of MW of concentrated electric loads. The provision of an Uninterruptible Power Supply (UPS) is necessary for the power feed system of IDCs owing to the need for stable power. Thus, conventional IDC AC power feed systems have three cascaded power conversion stages, (AC-DC), (DC-AC), and (AC-DC), resulting in a very low conversion efficiency. In comparison, DC power feed systems require only a single power conversion stage (AC-DC) to supply AC main power to DC server loads, resulting in comparatively high conversion efficiency and reliability [4-11]. This paper compares the efficiencies of a 220V AC power feed system with those of a 300V DC power feed system under equal load conditions, as established by the Mok-Dong IDC of Korea Telecom Co. Ltd. (KT). Experimental results show that the total operation efficiency of the 300V DC power feed system is approximately 15% higher than that of the 220V AC power feed system.

Development of Magnet Power Supply using Half Bridge Push Pull DC/DC Converter (하프 브릿지 푸쉬 풀 DC/DC 컨버트를 이용한 전자석 전원 개발)

  • Kim, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2030-2032
    • /
    • 1998
  • It is always necessary to high performance power supplies for the magnet system in the accelerator, especially when the number of power supplies are large. When have developed the compact power supply using switching technology instead of SCR phase control. We adopt the pulse width modulation(PWM) method with a half bridge DC/DC converter. In this way, we can make a compact system with light weight and small volume. Actual system we developed is 1.2kW, 35V/35A bipolar DC power supply current precision of +/-0.02%. It is possible to mount 10 unit in a conventional 19 rack. The built in controller has an RS422 protocol to drive 10 unit by one serial port up to 1.2km distance. If we adopt RS485 protocol, one serial port can control 32 power supplies. In this paper, we will report the design and performance of the prototype power supply.

  • PDF

A New ZVS Bi-directional CUK DC/DC Converter for a Car Dual Power Supply System (자동차 이중전원 시스템을 위한 새로운 ZVS 양방향 CUK DC/DC 컨버터)

  • Lee S. R.;Lee S. W.;Ko S. H.;Mun J. M.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.355-358
    • /
    • 2004
  • Currently, to overcome the limit of a 14V power supply system and to enhance the stability of this system high and to make the fuel efficiency better, a research development of a 42V power supply system is actively the progress. As an intermediate step to change into an unity power supply system, a 42V/14V dual power supply system uses a DC/DC Converter as one of structure elements. Considering the main electric power sources in the next generation of the car is a 42V system a 14V power supply system has advantages as follows : In be managed efficiently and to increase the redundancy at start, to jump start with any vehicles, etc. We need the introduction of a hi-directional converter that can flow the energy each other in a dual 42V-l2V system. This paper proposed the ZVS hi-directional CUK DC/DC converter which decrease the weight with the size of the DC/DC Converter and minimize the loss when the switching happen. In this paper, a circuit design method and an action principle of the circuit was proposed. To verify the proposed circuit, a comprehensive evaluation with theoretical analysis, simulation results is presented.

  • PDF

Current Source ZCS PFM DC-DC Converter for Magnetron Power Supply

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.20-28
    • /
    • 2009
  • This paper presents the design of zero current switching ZCS pulse frequency modulation type DC-DC converter for magnetron power supply. A magnetron serving as the microwave source in a microwave oven is driven by a switch mode power supply (SMPS). SMPSs have the advantages of improved efficiency, reduced size and weight, regulation and the ability to operate directly from the converter DC bus. The demands of the load system and the design of the power supply required to produce constant power at 4[kV]. A magnetron power supply requires the ability to limit the load current under short circuit conditions. The current source series resonant converter is a circuit configuration which can achieve this. The main features of the proposed converter are an inherent protection against a short circuit at the output, a high voltage gain and zero current switching over a large range of output power. These characteristics make it a viable choice for the implementation of a high voltage magnetron power supply.

EMC/LVD Compatibility Evaluation of ITER AC/DC Converter Subrack by EN 61000 and IEC 61010 (ITER AC/DC Converter 서브랙의 EN 61000 및 IEC 61010에 의한 EMC/LVD 시험평가)

  • Shin, Hyun-Kook;Oh, Jong-Seok;Song, In-Ho;Suh, Jae-Hak;Choi, Jung-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.222-226
    • /
    • 2021
  • To comply with CE marking requirements, the electromagnetic compatibility (EMC) and low-voltage directive (LVD) tests are conducted on the sub-racks of International Thermonuclear Experimental Reactor (ITER) AC/DC converters and bypass switches. The EMC tests consist of a series of tests, including the electromagnetic interference test, the electromagnetic field immunity test, and the rapid transient burst immunity test. In the LVD test, the electric shock protection test, the xcessive temperature limit and heat resistance of equipment tests, and the fire spread prevention test are performed. This work presents and reviews the European Directive for EMC/LVD and introduces the methods of EMC and LVD tests for the sub-racks of AC/DC converters and bypass switches. It also evaluates the test method and results to meet the European Directive requirements for CE marking. The sub-racks of ITER AC/DC converters and bypass switches successfully pass the EMC and LVD tests.

A Study on Power Flow Analysis of DC Traction Power Supply System with PWM Rectifier (PWM 정류기를 적용한 직류급전시스템의 조류계산에 대한 연구)

  • Kim, Joorak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1919-1924
    • /
    • 2016
  • In general, Diode rectifier has been applied to DC traction power supply system. Diode has some characteristics which is voltage drop in inverse proportion of load because of non-controlled switch, and cannot flow a current in reverse bias. So, voltage drop occurs frequently, and regenerated power cannot use in substation. The PWM rectifier is able to control output voltage constantly to reduce voltage drop and to use regeneration power without additional inverter. This paper proposes analysis algorithm for DC traction power supply system with PWM rectifier.

A HIGH VOLTAGE DC POWER SUPPLY SUITABLE FOR AN ION SOURCE

  • Nho, Eui-Cheol;Kim, In-Dong
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.436-441
    • /
    • 1998
  • This paper proposes an novel dc power supply using modified multilevel ac/dc converter. The output voltage of the power supply can be disconnected from and reapplied to the load rapidly. Therefore the power supply is suitable for a load having frequent short circuit such as ion source. The proposed scheme improves the performance, efficiency, and reliability and reduces the cost of the conventional power supply system for an ion beam acceleration.

  • PDF

Regenerated Power in Fixed voltage DC Electric Power Supply System (정전압 DC 급전시스템에서의 회생전력)

  • 정상기;이병송;정락교;박성혁;김국진
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.343-349
    • /
    • 2001
  • In this study we examined the method to estimate numerically the amount of the regenerated power and the excess regenerated power produced in the DC electric power supply system for the urban light rail transit system. And their economic feasibilities are also studied. For this study DC electric power supply system is simulated and the numerical analysis of the regenerated power and the excess regenerated power are conducted. The study result on the sample system shows that the facility to consume the excess regenerated power or the inverting equipment to reuse the excess regenerated power in the electric substation is feasible economically.

  • PDF

A Study on Residential Hybrid Distribution System for Reducing Power Conversion Loss (전력 변환 손실 저감을 위한 하이브리드 주거배전시스템)

  • Byen, Byeng-Joo;Seo, Hyun-Uk;Choi, Jung-Muk;Lee, Young-Jin;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.413-421
    • /
    • 2013
  • This paper proposes residential hybrid distribution system that can supply AC power and DC power to AC load and DC load at the same time. This hybrid distribution system consists of three parts: bidirectional inverter, step-up converter and step-down converter. Also that is used to supply voltage to home application is classified of AC load and DC load as load characteristics. The performance of proposed hybrid distribution system is validated through the hardware implementation and the experimental results.