• Title/Summary/Keyword: DC electric railway

Search Result 119, Processing Time 0.034 seconds

Development of Analysis Model for Metro Railway DC Electric Power System (도시철도 DC 급전시스템 해석 모델 개발)

  • Cha, Jun-Min;Kim, Hyung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1411-1417
    • /
    • 2006
  • The DC electric power system is the most important power source in a metro railway system. As metro railway system is expanded recently, the importance of DC electric power system is emphasized. Furthermore, the study for systemization and standardization of design and operation technique in DC electric power system is undergoing nowadays. For these studies, the development of standard analysis model for metro railway electric power system is required. In this paper, a standard analysis model for metro railway electric power system which is using PSCAD/EMTDC program is developed. The developed model is explained and the validity is shown by using the case studies.

  • PDF

A DC Electric Railway System for Improving Regenerative Energy Utilization (회생에너지 이용률 향상을 위한 새로운 DC 전기철도 급전시스템)

  • Han, Seong-Geun;Yoo, Hyeong-Jun;Kim, Hak-Man;Park, Jae-Se
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1613-1614
    • /
    • 2015
  • In this paper, we proposed a DC electric railway system that composed of a 3-phase voltage source converter (VSC) and a bidirectional DC-DC converter. The proposed electric railway system is modeled and simulated to show the feasibility in MATLAB/Simulink.

  • PDF

Development and Performance Test of DC Smart Metering System for the DC Power Measurement of Urban Railway (도시철도 직류 전력량 계측을 위한 직류용 스마트미터링 시스템 개발 및 성능시험)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Jongyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.713-718
    • /
    • 2014
  • DC urban railway power system consists of DC power network and AC power network. The DC power network supplies electric power to railway vehicles and the AC power network supplies electric power to station electric equipment. Recently, because of power consumption reduction and peak load shaving, intelligent measurement of regenerative energy and renewable energy adapted on DC urban railway is required. For this reason, DC smart metering system for DC power network shall be developed. Therefore, in this paper, DC voltage sensor, current sensor, and DC smart meter were developed and evaluated by performance test. DC voltage sensor was developed for measuring standard voltage range of DC urban railway, and DC current sensor was developed as hall effect split core type in order to install in existing system. DC smart meter possesses function of general intelligent electric power meter, such as measuring electricity and wireless communication etc. And, DC voltage sensor showed average 0.17% of measuring error for 2,000V/50mA, and current sensor showed average 0.21% of measuring error for ${\pm}2,000V/{\pm}4V$ in performance test. Also DC smart meter showed maximum 0.92% of measuring error for output of voltage sensor and current sensor. In similar environment for real DC power network, measuring error rate was under 0.5%. In conclusion, accuracy of DC smart metering system was confirmed by performance test, and more detailed performance will be verified by further real operation DC urban railway line test.

Electric Power Loss Comparison Study for Regenerative Utilization Technologies in DC Electric Railway Systems (철도차량 회생에너지 활용기술별 가선 손실 저감 효과 비교 분석 연구)

  • Lee, Hansang;Kim, Jinhak;Kim, Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1597-1598
    • /
    • 2015
  • Regenerative power utilization is one of the most interesting issue in electric railway systems. Generally, technologies to utilize regenerative power from railway vehicles are railway substation with regenerative inverter, on-station energy storage systems, and on-board energy storage systems. In this paper, the electric power loss for those technologies is calculated and compared using DC electric railway system analysis algorithm.

  • PDF

Development of Regeneration Invertor System for DC Electric Railway System (DC전철구간의 회생인버터시스템 개발)

  • Kim, Yong-Ki;Kim, Ju-Rak;Han, Moon-Seob;Kim, Jun-Gu;Yang, Young-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.505-511
    • /
    • 2008
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The purpose of this study was the development of the regenerative inverter system which suppress extra DC-line voltage and regenerate the energy instead of using a resister. That is Developed regenerative inverter system returns the regenerative energy from the DC line voltage to the utility. In addition, the inverter can be compensate the harmonics caused by the power conversion devices used in the DC traction system.

  • PDF

Development of Analysis Model for Metro Railway Power System Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 전기철도 전력공급시스템 해석모델개발)

  • Jang, Gil-Soo;Cha, Jun-Min
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.463-467
    • /
    • 2006
  • A direct current electric power system is one of the most important power source in a metro railway system. As railway system is growing up today, the importance of DC electric power system is emphasized. The study for systemization and standardization of design and operation technique in DC electric power system is undergoing nowadays. For these studies, the development of standard analysis model for metro railway electric power system is required. In this paper, a standard analysis model for metro railway electric power system which is using PSCAD/EMTDC program is proposed. The proposed model is explained and the validity is shown by using the case studies.

Efficiency Improvement Effect Analysis for Marginal Storage Capacity in DC Electric Railway Systems (직류도시철도 시스템에서 저장장치 단위 용량 당 에너지 절감 효과 분석 연구)

  • Lee, Hansang;Yoon, Donghee;Kim, Hyungchul;Joo, Sung-Kwan;Jung, Hosung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1159-1163
    • /
    • 2014
  • This paper have been dealt with the analysis for energy efficiency improvement effect of unity storage capacity as a part of the energy storage application study to improve energy efficiency in the electric railway systems. Especially, in order to estimate the amount of energy saving according to the variation of power capacity of each storage, the current limit module was mounted on an existing DC electric railway loadflow program which is based on the analysis model for railway system and storages, and combined optimization algorithm to determine optimal voltage boundary.

Modelling Voltage Variation at DC Railway Traction Substation using Recursive Least Square Estimation (순환최소자승법을 이용한 직류도시철도 변전소의 가선전압변동 모델링)

  • Bae, Chang-Han
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.534-539
    • /
    • 2015
  • The DC overhead line voltage of an electric railway substation swings depending on the accelerating and regenerative-braking energy of trains, and it deteriorates the energy quality of the electric facility in the DC railway substation and restricts the powering and braking performance of subway trains. Recently, an energy storage system or a regenerative inverter has been introduced into railway traction substations to diminish both the variance of the overhead line voltage and the peak power consumption. In this study, the variance of the overhead line voltage in a DC railway substation is modelled by RC parallel circuits in each feeder, and the RC parameters are estimated using the recursive least mean square (RLMS) scheme. The forgetting factor values for the RLMS are selected using simulated annealing optimization, and the modelling scheme of the overhead line voltage variation is evaluated through raw data measured in a downtown railway substation.

Improving Regenerative Break Energy Efficiency and Voltage Regulation Capability of DC Electric Railway by Coordination of VSC and EDLC (전압형 컨버터와 EDLC의 협조 제어에 의한 직류전기철도 회생에너지 이용률 및 전압 제어 능력 향상)

  • Jeon, Go-Woon;Yoo, Hyeong-Jun;Park, Jae-Sae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.176-181
    • /
    • 2015
  • In the DC electric railway system, the effective use of regenerative break energy is an important issue. Since regenerative break energy causes voltage rise or drop in the system, it should be also solved effectively. To solve the problems, applying electric double layer capacitor (EDLC) or voltage source converter (VSC) to the DC electric railway system has been studying. In this paper, the coordination of EDLC and VSC is proposed to solve the problem effectively with its coordinated control algorithm. The proposed method is tested to show its feasibility using Matlab/Simulink.

Direction for Development of Energy Regeneration Device for DC Electric Railway System (DC전철구간의 에너지회생장치 개발 방향)

  • Kim, Yong-Ki;Bae, Chang-Han;Han, Moon-Seob;Yang, Young-Chul;Jang, Su-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.804-808
    • /
    • 2007
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, Dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The proposed regeneration inverter system for DC traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

  • PDF