• 제목/요약/키워드: DC electric traction substation

검색결과 14건 처리시간 0.027초

DC전철구간의 에너지회생장치 개발 방향 (Direction for Development of Energy Regeneration Device for DC Electric Railway System)

  • 김용기;배창한;한문섭;양영철;장수진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.804-808
    • /
    • 2007
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, Dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The proposed regeneration inverter system for DC traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

  • PDF

DC전철구간의 회생인버터시스템 개발 (Development of Regeneration Invertor System for DC Electric Railway System)

  • 김용기;김주락;한문섭;김준구;양영철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.505-511
    • /
    • 2008
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The purpose of this study was the development of the regenerative inverter system which suppress extra DC-line voltage and regenerate the energy instead of using a resister. That is Developed regenerative inverter system returns the regenerative energy from the DC line voltage to the utility. In addition, the inverter can be compensate the harmonics caused by the power conversion devices used in the DC traction system.

  • PDF

순환최소자승법을 이용한 직류도시철도 변전소의 가선전압변동 모델링 (Modelling Voltage Variation at DC Railway Traction Substation using Recursive Least Square Estimation)

  • 배창한
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.534-539
    • /
    • 2015
  • The DC overhead line voltage of an electric railway substation swings depending on the accelerating and regenerative-braking energy of trains, and it deteriorates the energy quality of the electric facility in the DC railway substation and restricts the powering and braking performance of subway trains. Recently, an energy storage system or a regenerative inverter has been introduced into railway traction substations to diminish both the variance of the overhead line voltage and the peak power consumption. In this study, the variance of the overhead line voltage in a DC railway substation is modelled by RC parallel circuits in each feeder, and the RC parameters are estimated using the recursive least mean square (RLMS) scheme. The forgetting factor values for the RLMS are selected using simulated annealing optimization, and the modelling scheme of the overhead line voltage variation is evaluated through raw data measured in a downtown railway substation.

도시철도직류변전소의 회생전력 흡수를 위한 회생인버터 시뮬레이션 (Simulation study of a regenerative inverter for absorption of regenerative energy in a DC traction substation)

  • 배창한;한문섭;김용기;권삼영;박현준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.705-711
    • /
    • 2005
  • In DC traction substation with 12-pulse diode rectifiers, the DC line voltage tends to rise above noload voltage because it can't absorb the regenerative power caused by electric brakes of train. To solve this problem, an IGBT regenerative inverter should be installed and recycles the surplus regenerative power by delivering it. to the supply grid. In this paper, the DC traction substation equipped with a IGBT regenerative inverter is studied using computer simulation. Matlab/simulink is used to simulate the operation of regenerative inverter which injects the regenerative power into the supply grid and stabilizes the DC line voltage. It is confirmed that the high quality regenerative power is delivered to the supply grid thorough computer simulation.

  • PDF

도시철도 직류변전소의 회생전력흡수를 위한 계통연계형 인버터 시뮬레이션 (Simulation study of a grid-connected inverter for absorption of regenerative energy in a DC traction substation)

  • 배창한;한문섭;정호성;김용기;박현준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.279-281
    • /
    • 2005
  • In DC traction substation with 12-pulse diode rectifiers, the DC line voltage tends to rise above noload voltage because it can't absorb the regenerative power caused by electric brakes of train. To solve this problem, an IGBT regenerative inverter should be installed and thus recycles the surplus regenerative power by delivering it to the supply grid. In this paper, the DC traction substation equipped with a IGBT regenerative inverter is studied using computer simulation. Matlab/simulink is used to simulate the operation of regenerative inverter which injects the regenerative power into the supply grid and stabilizes the DC line voltage. It is confirmed that the high quality regenerative power is delivered to the supply grid thorough computer simulation.

  • PDF

선형인공신경망을 이용한 직류 전철변전소의 RC 회로정수 추정 (RC Circuit Parameter Estimation for DC Electric Traction Substation Using Linear Artificial Neural Network Scheme)

  • 배창한;김영국;박찬경;김용기;한문섭
    • 한국철도학회논문집
    • /
    • 제19권3호
    • /
    • pp.314-323
    • /
    • 2016
  • 직류 전철변전소의 가선전압은 전동차들의 회생제동 및 역행가속패턴에 따라 급격히 상승 또는 하강하는 특성을 갖는다. 가선전압 순시 변동폭을 최소로 유지함으로써, 전철변전소와 전동차들의 에너지 효율을 개선시키기 위한 다양한 연구들이 이루어지고 있다. 본 논문은 직류전철 변전소의 가선전압의 급격한 변동특성을 모델링하고 선형인공 신경망 알고리즘을 이용한 가선전압 회로모델의 파라메터 추정 방법을 제안하며, 최소자승법을 이용한 추정방법과의 비교를 통해 이 방법의 타당성을 입증한다. 가선전압 및 피더전류들의 누적 측정값을 사용하여 일괄처리 최소자승법으로 RC 병렬회로의 파라메터들을 추정한 결과를 제시하며, 실시간 가선전압 및 피더전류 측정값을 이용하여 오차역 전파방식으로 학습되는 선형인공신경망 기법 추정 결과를 분석한다.

도시철도 직류 비접지 급전계통에서의 선택 지락보호시스템의 성능평가 (An Evaluation of Selective Grounding Fault Protective Relaying Technique Performance on the Ungrounded DC Traction Power Supply System)

  • 정호성;김주욱;신승권;김형철;안태풍;윤준석
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1964-1969
    • /
    • 2012
  • This paper presents to verify the selective grounding fault protective relaying technique for the ungrounded DC traction power supply system. This system selectively blocks fault section when grounding fault occurred. In order to perform this verification, field test facilities have been installed on Oesam substation and Worldcup-Stadium substation, and field test process has been suggested. Also, selective grounding fault protective relaying components and rail voltage reduction device have been tested with the various trial examinations. In order to compare and evaluate performance of the selective grounding fault protective relaying function, field test system was modeled and the system fault simulation results were compared and evaluated with the field test result. Performance of selective grounding fault protective relaying function was evaluated with the above-mentioned process, and the fact that the system recognizes fault section irrespective of insulation between rail and ground and fault resistance from grounding fault.

직류전철용 전력공급 장치의 에너지희생에 관한 연구 (A study on energy regeneration of power supply for DC electric traction system)

  • 방효진;장수진;송상훈;원충연;김용기;안규복
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.439-442
    • /
    • 2004
  • This paper described a dc power system, which can generate the excessive do power form do bus line to ac source in substation for traction system. The proposed regeneration inverter system for dc traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation.

  • PDF

직류전철용 에너지 회생장치 성능개선 (Improving the capability of energy regeneration inverter for dc electric traction system)

  • 방효진;김용기;장수진;송상훈;안규복;원충연
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 춘계학술대회 논문집
    • /
    • pp.104-109
    • /
    • 2004
  • Recently, when electric traction system used DC 1500[Vdc] runs on decline of rail road track and slows down, dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. Therefore this paper proposes that the extra power is regenerated through regeneration inverter to AC utility in result this system obstruct to go beyond regular voltage and improve the efficiency. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality.

  • PDF

경전철 시험선용 전력공급시스템 설계 (The design of the traction power supply for the test line of Light Rail Vehicle)

  • 김국진;백병산;전용주;정상기;김남규
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.322-328
    • /
    • 2001
  • In the electric railway systems, it is very important that we should design the system configuration, location and power capacity of substation. This paper presents the results of system configuration and system design of the DC traction power supply for the test line of Light Rail Vehicle. The voltage fluctuation of train and the power capacity of substation are calculated by computer simulation using the nodal equation, K.C.L/K.V.L, Ohm's law and superposition theory.

  • PDF