• Title/Summary/Keyword: DNA marker

Search Result 1,003, Processing Time 0.028 seconds

Forensic DNA methylation profiling from evidence material for investigative leads

  • Lee, Hwan Young;Lee, Soong Deok;Shin, Kyoung-Jin
    • BMB Reports
    • /
    • v.49 no.7
    • /
    • pp.359-369
    • /
    • 2016
  • DNA methylation is emerging as an attractive marker providing investigative leads to solve crimes in forensic genetics. The identification of body fluids that utilizes tissue-specific DNA methylation can contribute to solving crimes by predicting activity related to the evidence material. The age estimation based on DNA methylation is expected to reduce the number of potential suspects, when the DNA profile from the evidence does not match with any known person, including those stored in the forensic database. Moreover, the variation in DNA implicates environmental exposure, such as cigarette smoking and alcohol consumption, thereby suggesting the possibility to be used as a marker for predicting the lifestyle of potential suspect. In this review, we describe recent advances in our understanding of DNA methylation variations and the utility of DNA methylation as a forensic marker for advanced investigative leads from evidence materials.

Utilization of DNA Marker-Assisted Selection in Korean Native Animals

  • Yeo, Jong-sou;Kim, Jae-Woo;Chang, Tea-Kyung;Pake, Young-Ae;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • The recent progress od DNA technologies including DNA fingerprinting (DFP) and random amplified DNA polymorphism (RAPD) analysis make it possible to identify the specific genetic trits of animals and to analyze the genetic diversity and relatedness between or withinspecies or populations. Using those techniquse, some efforts to identify and develop the specific DNA markers based on DNA polymorphism, which are related with economic traits for Korean native animals, Hanwoo(Korean native cattle),Korean native pig and Korean native chicken, have been made in Korea for recent a few years. The developed specific DNA markers successfully characterize the Korean native animals as the unique Korean genetic sources, distinctively from other imported breeds. Some of these DNA markers have been related to some important economic traits for domestic animals, for example, growth rate and marbling for Honwoo, growth rate and back fat thinkness fornative pig, and growth rate, agg weight and agg productivity for native chicken. This means that those markers can be used in important marker-assised selection (MAS) of Korean native domestic animals and further contribute to genetically improve and breed them.

  • PDF

The Molecular Biological Marker in Bombyx mori and Spodoptera frugiperda Cells (Bombyx mori세포주와 Spodoptera frugiperda세포주의 분자생물학적 표식자)

  • Jin, Byeong-Rae;Je, Yeon-Ho;Gang, Seok-Gwon
    • Journal of Sericultural and Entomological Science
    • /
    • v.38 no.1
    • /
    • pp.53-56
    • /
    • 1996
  • To investigate the molecular biological marker in insect cells, BmN-4 and Sf-0 cells were analysed by SDS-PAGE and random amplification of polymorphic DNA. The results showed that the patterns of total cell protein and random amplification of polymorphic DNA were distinguished between BmN-4 and Sf-9 cells, suggesting that the unique major bands were useful as molecular biological marker in BmN-4 and Sf-9 cells.

  • PDF

Identification of Coupling and Repulsion Phase DNA Marker Associated With an Allele of a Gene Conferring Host Plant Resistance to Pigeonpea sterility mosaic virus (PPSMV) in Pigeonpea (Cajanus cajan L. Millsp.)

  • Daspute, Abhijit;Fakrudin, B.
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • Pigeonpea Sterility Mosaic Disease (PSMD) is an important foliar disease caused by Pigeonpea sterility mosaic virus (PPSMV) which is transmitted by eriophyid mites (Aceria cajani Channabasavanna). In present study, a F2 mapping population comprising 325 individuals was developed by crossing PSMD susceptible genotype (Gullyal white) and PSMD resistant genotype (BSMR 736). We identified a set of 32 out of 300 short decamer random DNA markers that showed polymorphism between Gullyal white and BSMR 736 parents. Among them, eleven DNA markers showed polymorphism including coupling and repulsion phase type of polymorphism across the parents. Bulked Segregant Analysis (BSA), revealed that the DNA marker, IABTPPN7, produced a single coupling phase marker (IABTPPN $7_{414}$) and a repulsion phase marker (IABTPPN $7_{983}$) co-segregating with PSMD reaction. Screening of 325 F2 population using IABTPPN7 revealed that the repulsion phase marker, IABTPPN $7_{983}$, was co-segregating with the PSMD responsive SV1 at a distance of 23.9 cM for Bidar PPSMV isolate. On the other hand, the coupling phase marker IABTPPN $7_{414}$ did not show any linkage with PSMD resistance. Additionally, single marker analysis both IABTPPN $7_{983}$ (P<0.0001) and IABTPPN $7_{414}$ (P<0.0001) recorded a significant association with the PSMD resistance and explained a phenotypic variance of 31 and 36% respectively in $F_2$ population. The repulsion phase marker, IABTPPN7983, could be of use in Marker-Assisted Selection (MAS) in the PPSMV resistance breeding programmes of pigeonpea.

Development of a psychrophilic-SCAR marker for Pleurotus eryngii (큰느타리버섯의 저온적응성 형질에 관련된 SCAR Marker 개발)

  • Kim, Su Chul;Hwang, Hye Sung;Cho, Yun Jun;Kim, Hye Su;Ryu, Jae-San;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.11 no.3
    • /
    • pp.171-176
    • /
    • 2013
  • Genomic DNAs of psychrophilic strains of Pleurotus eryngii were analyzed by randomly amplified polymorphic DNA (RAPD) using OP-A, OP-B, OP-L, OP-P, OP-R and OP-S3 primers to develop the strain-specific DNA marker. A unique DNA fragment with the size of 480 bp was yielded by OP-S3 primer from the psychrophilic strain. A sequence characterized amplified region (SCAR) marker, designated as OP-S3-1, was designed on the basis of the determined sequence. The PCR analysis with the OP-S3-1 primer showed that this SCAR marker can clearly distinguish the psychrophilic strains from the control strains.

Bootstrap Analysis of ILSTS035 Microsatellite Locus in Hanwoo Chromosome 6

  • Lee, Jea-Young;Lee, Yong-Won;Kim, Mun-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • We selected, in previous research, a major DNA Marker 235bp of ILSTS035 microsatellite locus in progeny test Hanwoo chromosome 6. We apply a major DNA Marker 235bp to perormance valuation Hanwoo chomosome 6. We use bootstrap BCa method and calculate confidence interval. A major DNA Marker 235bp is verified that it does not have environmental effect but affects primely economic trait factor.

  • PDF

Identification of Hanwoo Meat by DNA Analysis (DNA 분석법에 의한 한우고기 판별)

  • Oh, Hong-Rock;Lee, Chang-Soo;Sang, Byung-Chan;Song, Kwang-Taek
    • Korean Journal of Agricultural Science
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • This study was deal with the development of breed-specific DNA marker which is able to identify Hanwoo and European cattle breeds(Non-Hanwoo) meat. Genetic differentiation between Korean cattle(Hanwoo) and European cattle breeds was examined by Random Amplified Polymorphic DNA(RAPD) analysis. The RAPD patterns were identical among Non-Hanwoo, such as Holstein, Hereford, Aberdeen Angus, Brown Swiss, Limousin or Simmental, but the above pattern was different from that of Hanwoo. All bands detected in the Hanwoo samples were observed in Non-Hanwoo cattle samples, but one of the common bands found in samples was not detected in the Hanwoo samples. The band(1.4kb) may be useful as a marker for identifying a meat of Hanwoo from imported cattle meat. Actually, the detection of the DNA marker was tested by DNA analysis with 929 samples which were prepared from bloods of 673 Hanwoo cattles and 141 Holstein cattles, from 115 imported cattle meats. The DNA marker was absent in 644 of 673 Hanwoo cattles (96%) but present in 245 of 256 Non-Hanwoo cattles (95%). These results show that the DNA marker is effective to characterize Hanwoo and Non-Hanwoo meat by its detection. This DNA marker, however, was not useful in detecting unwanted crossbreeding between two cattle breeds, because the band pattern in hybrid cattle shows one of two band patterns in Hanwoo and Non-Hanwoo.

  • PDF

Bootstrapping of Hanwoo Chromosome17 Based on BMS1167 Microsatellite Locus

  • Lee, Jea-Young;Lee, Yong-Won;Yeo, Jung-Sou
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.175-184
    • /
    • 2007
  • LOD scores and a permutation test for detecting and locating quantitative trait loci (QTL) from the Hanwoo economic trait have been described and we selected a considerable major BMS1167 locus for further analysis. K-means clustering analysis, for the major DNA marker mining of BMS1167 microsatellite loci in Hanwoo chromosome17, has been tried and three cluster groups divide four traits. The three cluster groups are classified according to eight DNA marker bps. Finally, we employed the bootstrap test method to calculate confidence intervals using the resampling method to find major DNA markers. We conclude that the major marker of BMS1167 locus in Hanwoo chromosome17 is only DNA marker 100bp.

  • PDF

A Major DNA Marker of BM4311 Microsatellite Locus in Hanwoo Chromosome 6 using the Bootstrap BCa Method

  • Lee, Jea-Young;Kim, Mun-Jung;Lee, Young-Won
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 2004
  • DNA marker 95bp and 100bp are selected as major DNA markers of the BM4311 microsatellite locus in progeny test Hanwoo chromosome 6 linkage map. This document is tried to know whether DNA marker 95bp and 100bp are also major DNA markers in Hanwoo performance valuation in chromosome 6 linkage map. The bootstrap BCa method will be used to calculate confidence interval for DNA markers.

  • PDF

Identification of Korean Native Goat Meat using Amplified Fragment Length Polymorphism (AFLP) DNA Markers (Amplified Fragment Length Polymorphism (AFLP) DNA Marker를 이용한 한국 재래흑염소육 감별)

  • 정의룡
    • Food Science of Animal Resources
    • /
    • v.22 no.4
    • /
    • pp.301-309
    • /
    • 2002
  • This study was carried out to develop the breed-specific DNA markers for breed identification of Korean native goat meat using amplified fragment length polymorphism (AFLP)-PCR techniques. The genomic DNAs of Korean native goat, imported black goat and four dairy goat breeds(Saanen, Alpine, Nubian and Toggenburg) were extracted from muscle tissues or blood. Genomic DNA was digested with a particular combination of two restriction enzymes with 4 base(Mse I and Taq I) and 6 base(EcoR I and Hind III) recognition sites, ligated to restriction specific adapters and amplified using the selective primer combinations. In AFLP profiles of polyacrylamide gels, the number of scorable bands produced per primer combination varied from 36 to 74, with an average of 55.5. A total of 555 bands were produced, 149(26.8%) bands of which were polymorphic. Among the ten primer combinations, two bands with 2.01 and 1.26 kb in M13/H13 primer and one band with 1.65 kb in E35/H14 primer were found to be breed-specific AFLP markers in Korean native goat when DNA bands were compared among the goat breeds. In the E35/H14 primer combination, 2.19, 2.03, 0.96 and 0.87 kb bands detected in imported black goat, 2.13 kb band in Saanen breed and 2.08 kb band in Nubian breed were observed as breed-specific bands showing differences between goat breeds, respectively. The E35/H14 primer combination produced four DNA bands distinguished between Korean native goat and Saanen breed. The is study suggested that the breed specific AFLP bands could be used as DNA markers for the identification of Korean native goat meat from imported black goat and dairy goat meats.