• Title/Summary/Keyword: DNA marker

Search Result 1,003, Processing Time 0.023 seconds

Genetic Diversity Analysis of the Cheju Horse Using Random Amplified Polymorphic DNAs (PCR-RAPD를 이용한 제주말의 유전적 다양성분석)

  • Cho, Byung-Wook;Lee, Kil-Wang
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.521-524
    • /
    • 2004
  • This experiment was carried out to analyze genetic characteristics and to develop the breed specific DNA marker for Cheju-native horse. If this marker contains high repetitive sequences, it is possible to convert a RAPD marker of interest into a single-locus PCR marker called a sequence characterized amplified region(SCAR). Twenty six Cheju-native horse and Fifty thoroughbred genomic DNA were pooled and PCR. were accomplished using 800 random primers. Comparing the pooled DNA from Cheju-native horse and thoroughbred, we found 9 primers which identified markers present in the pooled DNA from breed but absent in the other breed. Among 9 random primers, 6 primers were thoroughbred specific and 3 primers were Cheju-native horse specific. Testing individual horse revealed that 5 marker showed the similar band pattern between Cheju-native horse and Thoroughbred. However, 4 marker were wholly absent in breed while present in the other breed. UBC $126_{3500bp}$, UBC $162_{500bp}$, and UBC $244_{1200bp}$ was detected only Thoroughbred and UBC $562_{560bp}$was detected Cheju-native horse, respectively. After determining of the cloned breed-specific fragment sequence, we designed the SCAR-primers and carried out PCR. Compared to random primer, RAPD-SCAR primer didn't show significantly higher specific band. However, RAPD analysis is useful for genetic characterization of Cheju-native horse.

Identification of Beef Breed using DNA Marker of Coat Color Genes (모색 발현 유전자의 DNA Marker를 이용한 쇠고기 품종 판별)

  • Chung Eui-Ryong;Chung Ku-Young
    • Food Science of Animal Resources
    • /
    • v.24 no.4
    • /
    • pp.355-360
    • /
    • 2004
  • In Korean beef market, one of the major problems is mislabeling or fraudulent distribution of Holstein dairy meat or imported beef as domestic Hanwoo meat. Therefore, there has been a great need for a development of technology to identify beef breeds in meat and meat products. This study was carried out to develop the accurate and reliable method for the identification of beef breed using PCR-RFLP marker of MC1R, MGF and TYRPl genes affecting coat colors in cattle. A single base substitution (G\longrightarrowT transition) at the codon for amino acid position 104 of MC1R gene was identified between Hanwoo and Holstein and Angus breeds. The change at this position creates Msp I restriction site in Holstein and Angus, but not in Hanwoo. When the DNA amplified products (537 bp) was digested with Msp I, Hanwoo meat showed a single band of 537bp, while two fragments of 329bp and 208 bp were observed in Holstein meat and Angus breed, respectively. Thus, breed-specific RFLP marker in the MC1R gene can be used to distinguish between Hanwoo meat and Holstein and Angus meats. In the RFLP genotype of MGF gene, the frequency of r/r type was 75% in Manwoo, whereas the frequency of R/R was 80% in Hereford breed. Holstein and Angus breeds showed 100% for R/r type. Therefore, Hanwoo meat showed significant difference in the MGF genotype frequencies compared with those of Holstein meat and imported beef cattle breeds. However, TYRP1 gene showed the same genotype in all breeds examined. Thus, this TYRP1 gene can not be used as a molecular marker for breed identification. As a consequence, we suggest that RFLP markers of the MC1R and MGF coat color genes could be used as DNA marker for identification of Hanwoo meat from Holstein and imported meats.

Noninvasive fetal RHD genotyping using cell-free fetal DNA incorporating fetal RASSF1A marker in RhD-negative pregnant women in Korea

  • Han, Sung-Hee;Yang, Young-Ho;Ryu, Jae-Song;Kim, Young-Jin;Lee, Kyoung-Ryul
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.100-108
    • /
    • 2015
  • Purpose: Conventional methods for the prenatal detection of fetal RhD status involve invasive procedures such as fetal blood sampling and amniocentesis. The identification of cell-free fetal DNA (cffDNA) in maternal plasma creates the possibility of determining fetal RhD status by analyzing maternal plasma DNA. However, some technical problems still exist, especially the lack of a positive control marker for the presence of fetal DNA. Therefore, we assessed the feasibility and accuracy of fetal RHD genotyping incorporating the RASSF1A epigenetic fetal DNA marker from cffDNA in the maternal plasma of RhD-negative pregnant women in Korea. Materials and Methods: We analyzed maternal plasma from 41 pregnant women identified as RhD-negative by serological testing. Multiplex real-time PCR was performed by amplifying RHD exons 5 and 7 and the SRY gene, with RASSF1A being used as a gender-independent fetal epigenetic marker. The results were compared with those obtained by postnatal serological analysis of cord blood and gender identification. Results: Among the 41 fetuses, 37 were RhD-positive and 4 were RhD-negative according to the serological analysis of cord blood. There was 100% concordance between fetal RHD genotyping and serological cord blood results. Detection of the RASSF1A gene verified the presence of cffDNA, and the fetal SRY status was correctly detected in all 41 cases. Conclusion: Noninvasive fetal RHD genotyping with cffDNA incorporating RASSF1A is a feasible, reliable, and accurate method of determining fetal RhD status. It is an alternative to amniocentesis for the management of RhD-negative women and reduces the need for unnecessary RhIG prophylaxis.

Discrepancies between Mitochondrial DNA and AFLP Genetic Variation among Lineages of Sea Slaters Ligia in the East Asian Region

  • Kang, Seunghyun;Jung, Jongwoo
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.4
    • /
    • pp.347-353
    • /
    • 2020
  • Although sea slaters Ligia have a significant role in rocky shore habitats, their taxonomic entities have not been clearly understood. In this study, we investigated whether genetic variation inferred from a nuclear genetic marker, namely amplified fragment length polymorphism (AFLP), would conform to that of a mitochondrial DNA marker. Using both the mitochondrial DNA marker and the AFLP marker amplified by the six selective primer sets, we analyzed 95 Ligia individuals from eight locations from East Asia. The direct sequencing of mitochondrial 16S rRNA gene revealed three distinct genetic lineages, with 9.8-11.7 Kimura 2-parameter genetic distance. However, the results of AFLP genotyping analysis with 691 loci did not support those of mitochondrial DNA, and revealed an unexpectedly high proportion of shared polymorphisms among lineages. The inconsistency between the two different genetic markers may be explained by difference in DNA evolutionary history, for example inheritance patterns, effective population size, and mutation rate. The other factor is a possible genomic island of speciation, in that most of the genomic parts are shared among lineages, and only a few genomic regions have diverged.

Identification of Marker Nucleotides for the Molecular Authentication of Araliae Continentalis Radix Based on the Analysis of Universal DNA Barcode, matK and rbcL, Sequences (범용성 DNA 바코드(matK, rbcL) 분석을 통한 독활(獨活) 유전자 감별용 Marker Nucleotide 발굴)

  • Kim, Wook Jin;Yang, Sungyu;Choi, Goya;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.15-23
    • /
    • 2016
  • Objectives : Araliae Continentalis Radix and Angelicae Pubescentis Radix have been used as the same medicinal name Korean and Chinese traditional medicines, respectively. The authentic Araliae Continentalis Radix is described only the root of Aralia continentalis in the Korean Pharmarcopoeia. However, the dried root of Angelica biserrata, Levisticum officinale, or Heracleum moellendorffii also has been distributed adulterants of Araliae Continentalis Radix. To develop a reliable method for identifying Araliae Continentalis Radix from adulterants, we carried out the analyses of universal DNA barcode sequences.Methods : Four plants species were collected from different habitate and nucleotide sequences of matK and rbcL were analyzed. The species-specific sequences and phylogenetic relationship were estimated using entire sequences of two DNA barcodes, respectively.Results : In comparative analysis of matK sequences, we were identified 104 positions of marker nucleotide for Ar. continentalis, 3 for An. biserrata, 4 for L. officinale and 8 for H. moellendorffii enough to distinguish individual species, respectively. Furthermore, we obtained marker nucleotides in rbcL at 42 positions for Ar. continentalis, 5 for An. biserrata and 2 for H. moellendorffii, but not for L. officinale. The phylogenetic tree of matK and rbcL were showed that all samples were clustered into four groups constituting homogeneous clades within the species.Conclusions : We confirmed that species-specific marker nucleotides of matK sequence provides distinct genetic information enough to identify four species. Therefore, we suggest that matK gene is useful DNA barcode for discriminating authentic Araliae Continentalis Radix from inauthentic adulterants.

Discrimination of Bacillus anthracis from Bacillus cereus Group Using KHT5 Marker (KHT5 마커를 사용한 Bacillus cereus 그룹에서 Bacillus anthracis의 구별)

  • 김형태;김성주;채영규
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.40-44
    • /
    • 2003
  • Bacillus anthracis is a gram-positive spore-forming bacterium that causes the disease anthrax. In order to develop a DNA marker specific for Bacillus anthracis and to discriminate this species from Bacillus cereus group, we applied the randomly amplified polymorphic DNA (RAPD)-PCR technique to a collection of 29 strains of the genus Bacillus, including 22 species of the B. cereus group. A 709-bp RAPD marker (KHT5) specific for B. anthracis was obtained from B. anthracis BAK. The PCR product of internal primer set from the KHT5 fragment distinguished B. anthracis from the other species of the B. cereus group.

Telomere의 양적 분석을 이용한 닭의 bio-marker개발

  • 조은정;최철환;전익수;박철;손시환
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.13-15
    • /
    • 2004
  • Telomeres are the end of chromosomes and consist of a tandem repeat sequence of (TTAGGG)n and associated proteins. Telomeres are essential for chromosome stability and are related with cell senescence and apoptosis. This study was carried out to analyze the amount of telomeric DNA of chicken lymphocytes, which is to considered as bio-marker. The amount of telomeric DNA of lymphocytes in Korean Native Chicken and White Leghorn was analyzed by quantitative-fluorescence in situ hybridization (Q-FISH) technique using the chicken telomeric DNA probe. Telomere quantifies were compared among breeds, ages and sex, and the relationship between the amount of telomeres and their productive trait was also analyzed. Comparing the amount of telomeric DNA on lymphocytes during growing period, the amount of telomeres was gradually decreased as growing older. The telomere quantity was also significantly different in breeds and sex. Estimating correlation coefficient, the amount of telomeres was positively correlated to sexual maturity and body weight but negatively correlated to hen day egg production and egg weight. These results implicate the telomere quantity is considered as an individual bio-marker.

  • PDF

Genomic Polymorphisms of Genome DNA by Polymerase Chain Reaction-RAPD Analysis Using Arbitrary Primers in Rainbow Trout (PCR-RAPD 기법에 의한 무지개송어 Genome DNA 의 다형현상)

  • Yoon, J.M.
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.4
    • /
    • pp.303-311
    • /
    • 1999
  • Nuclear DNA was isolated from the sperm cells representing genetic characteristics and genomic polymorphisms of rainbow trout by polymerase chain reaction(PCR) amplification of DNA using arbitrary primers. Genomic DNA fingerprints were generated from rainbow trout sperm DNA by polymerase chain reaction amplification using 20 arbitrary decamers as primers. Out of these primers, 4 generated 17 highly reproducible RAPD markers, producing almost six polymorphic bands per primers. Four of 6 primers tested generated amplified fragments which were polymorphic between different individuals. Polymorphic DNA fragments were reproducibly amplified from independent DNA preparations made from individuals. Rainbow trout was distinctly observed 3 specific DNA markers (2. 3, 2.0 and 1.3kb) in bandsharing. Individual fragments generated using the same arbitrary primer, demonstrated that a single primer detected at least three independent genomic polymorphisms in rainbow trout sperm DNA. The RAPD polymorphism generated by this primer may be used as a genetic marker for individual identification The RAPD-PCR technique has been shown to reveal informative polymorphism in many species of fish. The present results demonstrate that RAPD markers are abundant, reproducible and provide a basis for future gene mapping and MAS in these important aquaculture species using RAPD polymorphic markers. It is concluded that RAPD polymorphisms are useful as genetic markers for fish breed differentiation.

  • PDF

한우 6번 염색체의 Bootstrap기법을 이용한 우수 DNA 탐색

  • Lee, Je-Yeong;Yeo, Jeong-Su;Kim, Jae-Woo;Lee, Yong-Won;Kim, Mun-Jeong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.41-47
    • /
    • 2003
  • 한우 6번 염색체 유전자 지도에서 한우의 질을 높이기 위한 QTL(quantitative trait loci)분석을 실시하여 선별된 Loci 값을 Permutation Test를 이용하여 계산하였다. 한편, 경제적으로 주요한 한우의 특성부위(질적부위와 육량등)에 따른, 우수 경제형질 DNA marker를 K-평균 군집법을 실시 파악하였다. 이들 QTL과 K-평균법에 의해 한우의 염색체 6번, ILST035의 주요 경제 형질별 DNA marker들을 선별하여, Bootstrap BCa방법을 이용하여 각 DNA marker들의 신뢰구간을 구했다.

  • PDF

Random Amplified Polymorphic DNA-PCR Analysis for Identification of Bacillus anthracis (탄저균의 Random Amplified Polymorphic DNA-PCR 분석)

  • 김성주;박경현;김형태;조기승;김기천;최영길;박승환;이남택;채영규
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.56-60
    • /
    • 2001
  • Molecular typing of Bacillus anthracis has been extremely difficult due to the lack of polymorphic DNA markers. Aiming to develop a DNA marker specific for Bacillus anthracis and to be able to discriminate this species from Bacillus genus, we applied the random amplified polymorphic DNA (RAPD)-PCR. We have identified B. anthracis from various Bacillus species. The analysis performed by RAPD clearly demonstrated substantial genetic variations among Bacillus species. This type of analysis is an easy, quick and highly discriminatory technique that may help in diagnosis of anthrax.

  • PDF