• Title/Summary/Keyword: DNA strand-specific binding

Search Result 10, Processing Time 0.034 seconds

DNA Light-strand Preferential Recognition of Human Mitochondria Transcription Termination Factor mTERF

  • Nam, Sang-Chul;Kang, Chang-Won
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.690-694
    • /
    • 2005
  • Transcription termination of the human mitochondrial genome requires specific binding to termination factor mTERF. In this study, mTERF was produced in E. coli and purified by two-step chromatography. mTERF-binding DNA sequences were isolated from a pool of randomized sequences by the repeated selection of bound sequences by gel-mobility shift assay and polymerase chain reaction. Sequencing and comparison of the 23 isolated clones revealed a 16-bp consensus sequence of 5'-GTG$\b{TGGC}$AGANCCNGG-3' in the light-strand (underlined residues were absolutely conserved), which nicely matched the genomic 13-bp terminator sequence 5'-$\b{TGGC}$AGAGCCCGG-3'. Moreover, mTERF binding assays of heteroduplex and single-stranded DNAs showed mTERF recognized the light strand in preference to the heavy strand. The preferential binding of mTERF with the light-strand may explain its distinct orientation-dependent termination activity.

Multiple Functions of the Amino-terminal Domain of Bacteriophage Lambda Integrase: A New Member of Three-stranded $\beta-sheet$ DNA-binding Proteins

  • Cho Eun Hee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.159-161
    • /
    • 2002
  • Bacteriophage lambda integrase carries out the site-specific recombination of lambda. Integrase contains two DNA binding domains with distinct sequence specificity, namely arm-type binding and core-type binding domains. The amino-terminal arm-binding domain is structurally related to the three-stranded $\beta-sheet$ family of DNA-binding domains. Integrase binding to the high affinity arm-type site by the amino-terminal domain facilitates Int binding to the low affinity core-type site, where the cleavage and strand exchange occurs. The amino-terminal domain of Int also modulates the core-binding and catalysis through intramolecular domain-domain interaction and/or intermolecular interactions between Int monomers. In addition, the amino-terminal domain interacts cooperatively with excisionase during excision. This indicates that amino-terminal domain of Int plays an important role in formation of proper higher-order nucleoprotein structure required for lambda site-specific recombination.

  • PDF

Regulation of Gene Expression and 3-Dimensional Structure of DNA (유전자 발현 조절과 DNA 3차원적 구조와의 관계)

  • 김병동
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.149-155
    • /
    • 1987
  • Growth and development of a higher plant, or any living organism for that matter, could be defined as an orderly expression of the genome in time and space in close interaction with the environment. During differentiation and development of a tissue or organ a group of genes must be selectively turned on or turned off mainly by trans-acting regulators. In this general concept of regulation of regulation of gene expression, a DNA molecule is recognized at a specific nucleotide sequence by DNA-binding factors. Molecular biology of the regulatory factors such as hormones, and their receptors, target DNA sequences and DNA-binding proteins are well advanced. What is not clearly understood is the molecular basis of the interactions between DNA and binding factors, expecially of the usages of the dyad symmetry of the target DNA sequences and the dimeric nature of the DNA-binding proteins. A unique 3-dimensional structure of DNA has been proposed that may play an important role in the orderly expression of the gene. A foldback intercoil (FBI) DNA configuration which was originally found by electron microscopy among mtDNA molecules from pearl millet has some unique features. The FBI configuration of DNA is believed to be formed when a flexible double helix folds back and interwines in the widened major grooves resulting in a four stranded, intercoil DNA whose thickness is the same as that of double stranded DNA. More recently, the FBI structure of DNA has been also induced in vitro by a novel enzyme which was purified from pearl millet mitochondria. It has been proposed that the FBI DNA could be utillized in intramolecular recombination which leads to inversion or deletion, and in intermolecular recombination which can lead to either site-specific recombination, genetic recombination via single strand invasion, or cross strand recombination. The structure and function of DNA in 3-dimensional aspect is emphasized for better understanding orderly expression of genes during growth and development.

  • PDF

NMR PEAK ASSIGNMENT FOR THE ELUCIDATION OF THE SOLUTION STRUCTURE OF T4 ENDONUCLEASE V

  • Im, Hoo-Kang;Jee, Jun-Goo;Yu, Jun-Suk;Lee, Bong-Jin
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.18-18
    • /
    • 1996
  • Bacteriophage T4 endonuclease V initiates the repair of ultraviolet (UV)-induced pyrimidine dimer photoproducts in duplex DNA. The mechanism of DNA strand cleavage involves four sequential steps: linear diffusion along dsDNA, pyrimidine dimer-specific binding, pyrimidine dimer-DNA glycosylase activity, and AP lyase activity. (omitted)

  • PDF

Association of Two Polymorphisms of DNA Polymerase Beta in Exon-9 and Exon-11 with Ovarian Carcinoma in India

  • Khanra, Kalyani;Panda, Kakali;Bhattacharya, Chandan;Mitra, A.K.;Sarkar, Ranu;Bhattacharyya, Nandan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1321-1324
    • /
    • 2012
  • Background: DNA polymerase beta ($pol{\beta}$) is a key enzyme in the base excision repair pathway. It is 39kDa protein, with two subunits, one large subunit of 31 kDa having catalytic activity between exon V to exon XIV, and an 8 kDa smaller subunit having single strand DNA binding activity. Exons V to VII have double strand DNA binding activity, whereas exons VIII to XI account for the nucleotidyl transferase activity and exons XII to XIV the dNTP selection activity. Aim: To examine the association between $pol{\beta}$ polymorphisms and the risk of ovarian cancer, the present case control study was performed using 152 cancer samples and non-metastatic normal samples from the same patients. In this study, mutational analysis of $pol{\beta}$ genomic DNA was undertaken using primers from exons IX to XIV - the portion having catalytic activity. Results: We detected alteration in DNA polymerase beta by SSCP. Two specific heterozygous point mutations of $pol{\beta}$ were identified in Exon 9:486, A->C (polymorphism 1; 11.18%) and in Exon 11:676, A->C (polymorphism 2; 9.86%). The correlation study involving polymorphism 1 and 4 types of tissue showed a significant correlation between mucinous type with a Pearson correlation value of 4.03 (p=0.04). The association among polymorphism 2 with serous type and stage IV together have shown Pearson ${\chi}^2$ value of 3.28 with likelihood ratio of 4.4 (p=0.07) with OR =2.08 (0.3-14.55). This indicates that there is a tendency of correlation among polymorphism 2, serous type and stage IV, indicating a risk factor for ovarian cancer. Conclusion: Hence, the results indicate that there is a tendency for $pol{\beta}$ polymorphisms being a risk factor for ovarian carcinogenesis in India.

HeLa Cells Containing a Truncated Form of DNA Polymerase Beta are More Sensitized to Alkylating Agents than to Agents Inducing Oxidative Stress

  • Khanra, Kalyani;Chakraborty, Anindita;Bhattacharyya, Nandan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8177-8186
    • /
    • 2016
  • The present study was aimed at determining the effects of alkylating and oxidative stress inducing agents on a newly identified variant of DNA polymerase beta ($pol{\beta}{\Delta}_{208-304}$) specific for ovarian cancer. $Pol{\beta}{\Delta}_{208-304}$ has a deletion of exons 11-13 which lie in the catalytic part of enzyme. We compared the effect of these chemicals on HeLa cells and HeLa cells stably transfected with this variant cloned into in pcDNAI/neo vector by MTT, colony forming and apoptosis assays. $Pol{\beta}{\Delta}_{208-304}$ cells exhibited greater sensitivity to an alkylating agent and less sensitivity towards $H_2O_2$ and UV when compared with HeLa cells alone. It has been shown that cell death in $Pol{\beta}{\Delta}_{208-304}$ transfected HeLa cells is mediated by the caspase 9 cascade. Exon 11 has nucleotidyl selection activity, while exons 12 and 13 have dNTP selection activity. Hence deletion of this part may affect polymerizing activity although single strand binding and double strand binding activity may remain same. The lack of this part may adversely affect catalytic activity of DNA polymerase beta so that the variant may act as a dominant negative mutant. This would represent clinical significance if translated into a clinical setting because resistance to radiation or chemotherapy during the relapse of the disease could be potentially overcome by this approach.

NMR peak assignment for the elucidation of the solution structure of T4 Endonuclease V

  • Im, Hoo-Kang;Hyungmi Lihm;Yu, Jun-Suk;Lee, Bong-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.183-183
    • /
    • 1996
  • Bacteriophage T4 endonuclease V initiates the repair of ultraviolet (UV)-induced pyrimidine dimer photoproducts in duplex DNA. The mechanism of DNA strand cleavage involves four sequential stens: linear diffusion along dsDNA, pyrimidine dimer-specific binding,l pyrimidine dimer-DNA glycosylase activity, and Af lyase activity. Although crystal structure is known for this enzyme, solution structure has not been yet known. In order to elucidate the solution structure of this enzyme NMR spectroscopy was used. As a basis for the NMR peak assignment of the protein, HSQC spectrum was obtained on the uniformly $\^$15/N-labeled T4 endonuclease V. Each amide peak of the spectrum were classified according to amino acid spin systems by interpreting the spectrum of $\^$15/N amino acid-specific labeled T4 endonuclease V. The assignment was mainly obtained from three-dimensional NMR spectra such as 3D NOESY-HMQC, 3D TOCSY-HMQC. These experiments were carried out will uniformly $\^$15/N-labeled sample. In order to assign tile resonance of backbon atom, triple-resonance theree-dimensional NMR experiments were also performed using double labeled($\^$15/N$\^$13/C) sample. 3D HNCA, HN(CO)CA, HNCO, HN(CA)HA spectra were recorded for this purpose. The results of assignments were used to interpret the interaction of this enzyme with DNA. HSQC spectrum was obtained for T4 endonuclease V with specific $\^$15/N-labeled amino acids that have been known for important residue in catalysis. By comparing the spectrum of enzyme*DNA complex with that of the enzyme, we could confirm the important role of some residues of Thr, Arg, Tyr in activity. The results of assignments were also used to predict the secondary structure by chemical shift index (CSI).

  • PDF

PCNA Modifications for Regulation of Post-Replication Repair Pathways

  • Lee, Kyoo-young;Myung, Kyungjae
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is catalyzed by Rad6/Rad18 complex. PCNA monoubiquitination triggers the replacement of replicative polymerase with special translesion synthesis (TLS) polymerases that are able to replicate past DNA lesions. The PCNA interaction motif and/or the ubiquitin binding motif in most TLS polymerases seem to be important for the regulation of TLS. The TLS pathway is usually error-prone because TLS polymerases have low fidelity and no proofreading activity. PCNA can also be further polyubiquitinated by Ubc13/ Mms2/Rad5 complex, which adds an ubiquitin chain onto monoubiquitinated K164 of PCNA. PCNA polyubiquitination directs a different PRR pathway known as error-free damage avoidance, which uses the newly synthesized sister chromatid as a template to bypass DNA damage presumably through template switching mechanism. Mammalian homologues of all of the yeast PRR proteins have been identified, thus PRR is well conserved throughout evolution. Mutations of some PRR genes are associated with a higher risk for cancers in mice and human patients, strongly supporting the importance of PRR as a tumor suppressor pathway.

Mitotic-Specific Methylation in the HeLa Cell through Loss of DNMTs and DMAP1 from Chromatin

  • Kim, Kee-Pyo;Kim, Gun-Do;Kang, Yong-Kook;Lee, Dong-Seok;Koo, Deog-Bon;Lee, Hoon-Taek;Chung, Kil-Saeng;Lee, Kyung-Kwang;Han, Yong-Mahn
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.27-27
    • /
    • 2003
  • A diversified and concentrative approach of methylation player can be one of the most powerful studies in the understanding of global epigenetic modifications. Previous studies have suggested that DNA methylation contributes to transcriptional silencing through the several DNA methylation-mediated repression systems by hypermethylation, including methyltransferases (DNMTs), DNA methyltransferase association protein 1 (DMAPl), methyl-CpG binding domain (MBD), and histone deacetylases (HDACs). Assembly of these regulatory protein complexes act sequentially, reciprocally, and interdependently on the newly composed DNA strand through S phase. Therefore, these protein complexes have a role in coupling DNA replication to the designed turn-off system in genome. In this study, we attempted to address the role of DNA methylation by the functional analysis of the methyltransferase molecule, we described the involvement of DMAP1 and DNMTs in cell divistion and the effect of their loss. We also described distinct patterns that DMAP1 and DNMTs are spatially reorganized and displaced from condensing chromosomes as cells progress through mitosis in HeLa cell, COS7, and HIH3T3 cell cycle progressions. DNMT1, DNMT3b, and DMAP1 do not stably contact the genetic material during chromosome compaction and repressive expression. These finding show that the loss of activities of DNMTs and DMAP1 occure stage specifically during the cell cycle, may contribute to the integral balance of global DNA methylation. This is consistent with previous studies resulted in decreased histone acetyltransferases and HDACs, and differs from studies resulted in increased histone methyltransferases. Our results suggest that DNA methylation by DNMTs and DMAP1 during mitosis acts to antagonize hypermethylation by which this mark is epigenetical mitotic-specific methylation.

  • PDF

A qPCR Method to Assay Endonuclease Activity of Cas9-sgRNA Ribonucleoprotein Complexes

  • Minh Tri Nguyen;Seul-Ah Kim;Ya-Yun Cheng;Sung Hoon Hong;Yong-Su Jin;Nam Soo Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1228-1237
    • /
    • 2023
  • The CRISPR-Cas system has emerged as the most efficient genome editing technique for a wide range of cells. Delivery of the Cas9-sgRNA ribonucleoprotein complex (Cas9 RNP) has gained popularity. The objective of this study was to develop a quantitative polymerase chain reaction (qPCR)-based assay to quantify the double-strand break reaction mediated by Cas9 RNP. To accomplish this, the dextransucrase gene (dsr) from Leuconostoc citreum was selected as the target DNA. The Cas9 protein was produced using recombinant Escherichia coli BL21, and two sgRNAs were synthesized through in vitro transcription to facilitate binding with the dsr gene. Under optimized in vitro conditions, the 2.6 kb dsr DNA was specifically cleaved into 1.1 and 1.5 kb fragments by both Cas9-sgRNA365 and Cas9-sgRNA433. By monitoring changes in dsr concentration using qPCR, the endonuclease activities of the two Cas9 RNPs were measured, and their efficiencies were compared. Specifically, the specific activities of dsr365RNP and dsr433RNP were 28.74 and 34.48 (unit/㎍ RNP), respectively. The versatility of this method was also verified using different target genes, uracil phosphoribosyl transferase (upp) gene, of Bifidobacterium bifidum and specific sgRNAs. The assay method was also utilized to determine the impact of high electrical field on Cas9 RNP activity during an efficient electroporation process. Overall, the results demonstrated that the qPCR-based method is an effective tool for measuring the endonuclease activity of Cas9 RNP.