• Title/Summary/Keyword: DNA-DNA Hybridization

Search Result 868, Processing Time 0.031 seconds

Relationship Between Genome Similarity and DNA-DNA Hybridization Among Closely Related Bacteria

  • Kang, Cheol-Hee;Nam, Young-Do;Chung, Won-Hyong;Quan, Zhe-Xue;Park, Yong-Ha;Park, Soo-Je;Desmone, Racheal;Wan, Xiu-Feng;Rhee, Sung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.945-951
    • /
    • 2007
  • DNA-DNA hybridization has been established as an important technology in bacterial species taxonomy and phylogenetic analysis. In this study, we analyzed how the efficiency with which the genomic DNA from one species hybridizes to the genomic DNA of another species (DNA-DNA hybridization) in microarray analysis relates to the similarity between two genomes. We found that the predicted DNA-DNA hybridization based on genome sequence similarity correlated well with the experimentally determined microarray hybridization. Between closely related strains, significant numbers of highly divergent genes (>55% identity) and/or the accumulation of mismatches between conserved genes lowered the DNA-DNA hybridization signal, and this reduced the hybridization signals to below 70% for even bacterial strains with over 97% 16S rRNA gene identity. In addition, our results also suggest that a DNA-DNA hybridization signal intensity of over 40% indicates that two genomes at least shared 30% conserved genes (>60% gene identity). This study may expand our knowledge of DNA-DNA hybridization based on genomic sequence similarity comparison and further provide insights for bacterial phylogeny analyses.

Differentiation of four Mycobacterium Species using DNA-DNA Hybridization Method using Specific Probes

  • Kweon, Tae-Dong;Bai, Sun-Joon;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.1012-1014
    • /
    • 2013
  • DNA-DNA hybridization method with four oligonucleotide-specific probes was used simultaneously for differentiation and identification of four Mycobacterium species (Mycobacterium tuberculosis, M. avium, M. intracellulare, and M. kansasii). This DNA-DNA hybridization method with 4 oligonucleotide-specific probes, which targets in the rpoB region of 4 Mycobacteria species, respectively, was tested on 322 clinical isolates. Using DNA-DNA hybridization method, we detected M. tuberculosis (282 strains), M. avim (7 strains), M. intracellulare (9 strains), and M. kansasii (3 strain) from 322 clinical isolates. This result was compared with conventional biochemical test and rpoB DNA sequence analysis of this clinical isolates. We confirmed identification of Mycobacterium tuberculosis, M. avium, M. intracellulare, and M. kansasii with high sensitivity (100 %) and specificity (100 %). This DNA-DNA hybridization method could be performed within 4 hours at least. Therefore, we suggest that DNA- DNA hybridization method using 4 rpoB DNA probes of Mycobacteria could be used for accurate, rapid, convenient detection and identification of Mycobacterium tuberculosis, M. avium, M. intracellulare, and M. kansasii in clinical samples.

  • PDF

Enhancement of DNA Microarray Hybridization using Microfluidic Biochip (미세유체 바이오칩을 이용한 DNA 마이크로어레이 Hybridization 향상)

  • Lee, H.H.;Kim, Y.S.
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.387-392
    • /
    • 2007
  • Recently, microfluidic biochips for DNA microarray are providing a number of advantages such as, reduction in reagent volume, high-throughput parallel sample screening, automation of processing, and reduction in hybridization time. Particularly, the enhancement of target probe hybridization by decrease of hybridization time is an important aspect highlighting the advantage of microfluidic DNA microarray platform. Fundamental issues to overcome extremely slow diffusion-limited hybridization are based on physical, electrical or fluidic dynamical mixing technology. So far, there have been some reports on the enhancement of the hybridization with the microfluidic platforms. In this review, their principle, performance, and outreaching of the technology are overviewed and discussed for the implementation into many bio-applications.

A Study on Match and Mismatch DNA Hybridization properties Using DNA Hybridization Detection Sensor (DNA Hybridization 검출 센서를 이용한 매치 및 미스매치 DNA hybridization 특성 연구)

  • Kim, Do-Kyun;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.89-91
    • /
    • 2003
  • The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and other application area. So, the improvement of DNA detection system is very important for the determination of this hybridization reaction. In this study, we report the characterization of the probe and target oligonucleotide hybridization reaction using the evanescent field microscopy. First, we have fabricated DNA chip microarray. The particles which were immobilized oligonucleotides were arranged by the random fluidic self-assembly on the pattern chips, using hydrophobic interaction. Second, we have detected DNA hybridization reaction using evanescent field microscopy. The 5'-biotinylated probe oligonucleotides were immobilized on the surface of DNA chip microarray and the hybridization reaction with the Rhodamine conjugated target oligonucleotide was excited fluorescence generated on the evanescent field microscopy. In the foundation of this result, we could be employed as the basis of a probe olidonucleotide, capable of detecting the target oligonucleotide and monitoring it in a large analyte concentration range and various mismatching condition.

  • PDF

DNA Hybridization Simulation with Single Base Mismatches for DNA Computing (1-Base non Watson-Crick 결합을 허용하는 DNA Hybridization Simulation)

  • 장하영;신수용;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.476-478
    • /
    • 2003
  • 1-Base의 non Watson-Crick 결합과, Dangling end(결합이 이루어진 두 개의 DNA strand 중 한쪽 끝이 다른 쪽 끝보다 짧은 경우)를 허용하는 nearest-neighbor model을 사용하여 DNA/DNA Hybridization 예측 시스템을 구현하였다. DNA 컴퓨팅을 기존의 실리콘 컴퓨터를 이용하여 접근하는 이러한 방법은 좀 더 효율적인 분자 알고리즘의 개발과 DNA 컴퓨팅에 사용될 수 있는 더욱 신뢰성 있는 DNA 시퀀스의 설계에 도움을 줄 수 있을 것이다.

  • PDF

Evaluation of Amplified-based Target Preparation Strategies for Toxicogenomics Study : cDNA versus cRNA

  • Nam, Suk-Woo;Lee, Jung-Young
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.92-98
    • /
    • 2005
  • DNA microarray analysis of gene expression in toxicogenomics typically requires relatively large amounts of total RNA. This limits the use of DNA microarray when the sample available is small. To confront this limitation, different methods of linear RNA amplification that generate antisense RNA (aRNA) have been optimized for microarray use. The target preparation strategy using amplified RNA in DNA microarray protocol can be divided into direct-incorporation labeling which resulted in cDNA targets (Cy-dye labeled cDNA from aRNA) and indirect-labeling which resulted in cRNA targets (i.e. Cy-dye labeled aRNA), respectively. However, despite the common use of amplified targets (cDNA or cRNA) from aRNAs, no systemic assessment for the use of amplified targets and bias in terms of hybridization performance has been reported. In this investigation, we have compared the hybridization performance of cRNA targets with cDNA targets from aRNA on a 10 K cDNA microarrays. Under optimized hybridization conditions, we found that 43% of outliers from cDNA technique and 86% from the outlier genes were reproducibly detected by both targets hybridization onto cDNA microarray. This suggests that the cRNA labeling method may have a reduced capacity for detecting the differential gene expression when compared to the cDNA target preparation. However, further validation of this discordant result should be pursued to determine which techniques possesses better accuracy in identifying truly differential genes.

Real-Time Detection of DNA Hybridization Assay by Using Evanescent Field Microscopy

  • Kim, Do-Kyun;Choi, Yong-Sung;Murakami, Yuji;Tamiya, Eiichi;Kwon, Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.85-90
    • /
    • 2001
  • The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and other application area. So, the improvement of DNA detection system is very important for the determination of this hybridization reaction. In this study, we report the characterization of the probe and target oligonucleotide hybridization reaction using the evanescent field microscopy. First, we have fabricated DNA chip microarray. The particles which were immobilized oligonucleotides were arranged by the random fluidic self-assembly on the pattern chips, using hydrophobic interaction. Second, we have detected DNA hybridization reaction using evanescent field microscopy. The 5'-biotinylated probe oligonucleotides were immobilized on the surface of DNA chip microarray and the hybridization reaction with the Rhodamine conjugated target oligonucleotide was excited fluorescence generated on the evanescent field microscopy. In the foundation of this result, we could be employed as the basis of a probe olidonucleotide, capable of detecting the target oligonucleotide and monitoring it in a large analyte concentration range and various mismatching condition.

  • PDF

Detection of Mycobacterium kansasii Using DNA-DNA Hybridization with rpoB Probe

  • Kweon, Tae-Dong;Bai, Sun-Joon;Choi, Chang-Shik;Hong, Seong-Karp
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.210-214
    • /
    • 2012
  • A microtiter well plate DNA hybridization method using Mycobacterium kansasii-specific rpoB DNA probe (kanp) were evaluated for the detection of M. kansasii from culture isolates. Among the 201 isolates tested by this method, 27 strains show positive results for M. kansasii, but the other 174 isolates were negative results for M. kansasii. This result was consistent with partial rpoB sequence analysis of M. kansasii and the result of biochemical tests. The negative strains by this DNA-DNA hybridization method were identified as Mycobacterium tuberculosis (159 strains), Mycobacterium avim (5 strains), Mycobacterium intracellulare (8 strains), and Mycobacterium flavescens (2 strain) by rpoB DNA sequence analysis. Due to high sensitivity and specificity of this test result, we suggest that DNA-DNA hybridization method using rpoB DNA probes of M. kansasii could be used for the rapid and convenient detection of M. kansasii.

Hybridization by an Electrical Force and Electrochemical Genome Detection Using an Indicator-free DNA on a Microelectrode-array DNA Chip

  • Choi, Yong-Sung;Lee, Kyung-Sup;Park, Dae-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.379-383
    • /
    • 2005
  • This research aims to develop DNA chip array without an indicator. We fabricated microelectrode array by photolithography technology. Several DNA probes were immobilized on an electrode. Then, indicator-free target DNA was hybridized by an electrical force and measured electrochemically. Cyclic-voltammograms (CVs) showed a difference between DNA probe and mismatched DNA in an anodic peak. Immobilization of probe DNA and hybridization of target DNA could be confirmed by fluorescent. This indicator-free DNA chip microarray resulted in the sequence-specific detection of the target DNA quantitatively ranging from $10^{-18}\;M\;to\;10^{-5}$ M in the buffer solution. This indicator-free DNA chip resulted in a sequence-specific detection of the target DNA.

Detection and Analysis of DNA Hybridization Characteristics by using Thermodynamic Method (열역학법을 이용한 DNA hybridization 특성 검출 및 해석)

  • Kim, Do-Gyun;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.265-270
    • /
    • 2002
  • The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and application area. So, the improvement of DNA hybridization detection method is very important for the determination of this hybridization reaction. Several molecular biological techniques require accurate predictions of matched versus mismatched hybridization thermodynamics, such as PCR, sequencing by hybridization, gene diagnostics and antisense oligonucleotide probes. In addition, recent developments of oligonucleotide chip arrays as means for biochemical assays and DNA sequencing requires accurate knowledge of hybridization thermodynamics and population ratios at matched and mismatched target sites. In this study, we report the characteristics of the probe and matched, mismatched target oligonucleotide hybridization reaction using thermodynamic method. Thermodynamic of 5 oligonucleotides with central and terminal mismatch sequences were obtained by measured UV-absorbance as a function of temperature. The data show that the nearest-neighbor base-pair model is adequate for predicting thermodynamics of oligonucleotides with average deviations for $\Delta$H$^{0}$ , $\Delta$S$^{0}$ , $\Delta$G$_{37}$ $^{0}$ and T$_{m}$, respectively.>$^{0}$ and T$_{m}$, respectively.