• Title/Summary/Keyword: DNA-binding domain

Search Result 260, Processing Time 0.027 seconds

Multiple Functions of the Amino-terminal Domain of Bacteriophage Lambda Integrase: A New Member of Three-stranded $\beta-sheet$ DNA-binding Proteins

  • Cho Eun Hee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.159-161
    • /
    • 2002
  • Bacteriophage lambda integrase carries out the site-specific recombination of lambda. Integrase contains two DNA binding domains with distinct sequence specificity, namely arm-type binding and core-type binding domains. The amino-terminal arm-binding domain is structurally related to the three-stranded $\beta-sheet$ family of DNA-binding domains. Integrase binding to the high affinity arm-type site by the amino-terminal domain facilitates Int binding to the low affinity core-type site, where the cleavage and strand exchange occurs. The amino-terminal domain of Int also modulates the core-binding and catalysis through intramolecular domain-domain interaction and/or intermolecular interactions between Int monomers. In addition, the amino-terminal domain interacts cooperatively with excisionase during excision. This indicates that amino-terminal domain of Int plays an important role in formation of proper higher-order nucleoprotein structure required for lambda site-specific recombination.

  • PDF

An analysis of the arm-type site binding domain of bacteriophage .lambda. integrase

  • Cho, Eun-Hee
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.165-170
    • /
    • 1995
  • The 356 amino acid long lambda integrase protein of bacteriophage .lambda. constains two autonomous DNA binding domains with distinct sequence specificities. The amino terminal domain of integrase is implicated to bind to the arm-type sequences and the carboxyl domain interacts with the coretype sequencess. As a first step to understand the molecular mechanism of the integrase-DNA interaction at the arm-type site, the int(am)94 gene carrying an amber mutation at the 94th codon of the int was cloned under the control of the P$\_$tac/ promoter and the lacI$\_$q/ gene. The Int(am)94 mutant protein of amino terminal 93 amino acid residues can be produced at high level from a suppressor free strain harboring the plasmid pInt(am)94. The arm-type binding activity of Int(am)94 were measured in vivo and in vitro. A comparison of the arm-type binding properties of the wild-type integrase and the truncated Int(am)94 mutant indicated that the truncated fragment containing 93 amino acid residues carry all the determinants for DNA binding at the arm-type sites.

  • PDF

Localization of F plasmid SopB protein and Gene silencing via protein-mediated subcellular localization of DNA

  • Kim Sook-Kyung;James C. Wang
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.15-23
    • /
    • 2000
  • The subcellular localization of the SopB protein, which is encoded by the Escherichia coli F plasmid and is involved in the partition of the single-copy plasmid, was directly visualized through the expression of the protein fused to the jellyfish green fluorescent protein (GFP). The fusion protein was found to localize to positions close but not at the poles of exponentially growing cells. Examination of derivatives of the fusion protein lacking various regions of SopB suggests that the signal for the cellular localization of SopB resides in a region close to its N terminus. Overexpression of SopB led to silencing of genes linked to, but well-separated from, a cluster of SopB-binding sites termed sopC. In this SopB-mediated repression of sopC-linked genes, all but the N-terminal 82 amino acids of SopB can be replaced by the DNA-binding domain of a sequence-specific DNA -binding protein, provided that the sopC locus is also replaced by the recognition sequence of the DNA-binding domain. These results suggest a mechanism of gene silencing: patches of closely packed DNA-binding protein is localized to specific cellular sites; such a patch can capture a DNA carrying the recognition site of the DNA -binding domain and sequestrate genes adjacent to the recognition site through nonspecific binding of DNA.

  • PDF

Kinetic analysis of Drosophila Vnd protein containing homeodomain with its target sequence

  • Yoo, Si-Uk
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.407-412
    • /
    • 2010
  • Homeodomain (HD) is a highly conserved DNA-binding domain composed of helix-turn-helix motif. Drosophila Vnd (Ventral nervous system defective) containing HD acts as a regulator to either enhance or suppress gene expression upon binding to its target sequence. In this study, kinetic analysis of Vnd binding to DNA was performed. The result demonstrates that DNA-binding affinity of the recombinant protein containing HD and NK2-specific domain (NK2-SD) was higher than that of the full-length Vnd. To access whether phosphorylation sites within HD and NK2-SD affect the interaction of the protein with the target sequence, alanine substitutions were introduced. The result shows that S631A mutation within NK2-SD does not contribute significantly to the DNA-binding affinity. However, S571A and T600A mutations within HD showed lower affinity for DNA binding. In addition, DNA-binding analysis using embryonic nuclear protein also demonstrates that Vnd interacts with other nuclear proteins, suggesting the existence of Vnd as a complex.

NMR and Fluorescence Studies of DNA Binding Domain of INI1/hSNF5

  • Lee, Dongju;Moon, Sunjin;Yun, Jihye;Kim, Eunhee;Cheong, Chaejoon;Lee, Weontae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2753-2757
    • /
    • 2014
  • INtegrase Interactor 1 protein (INI1/hSNF5) or BRG1-associated factor 47 (BAF47) is a SWI/SNF-related matrix associated actin dependent regulator of chromatin subfamily B member. DNA binding domain of INI1/hSNF5 is cloned into E.coli expression vectors, pET32a and purified as a monomer using size exclusion chromatography. NMR data show that $INI1^{DBD}$ has folded state with high population of ${\alpha}$-helices. By fluorescence-quenching experiments, binding affinities between $INI1^{DBD}$ and two double stranded DNA fragments were determined as $29.9{\pm}2.6{\mu}M$ (GAL4_1) and $258.7{\pm}5.8$ (GAL4_2) ${\mu}M$, respectively. Our data revealed that DNA binding domain of INI1/hSNF5 binds to transcriptional DNA sequences, and it could play an important role as a transcriptional regulator.

NMR Study of Consensus DNA-binding Site for Arabidopsis thaliana Class I Transcription Factor AtTCP1

  • Choi, Yong-Geun;Kim, Hee-Eun;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2013
  • The TCP domain is a DNA-binding domain present in plant transcription factors and has a similar structural feature to the bHTH motif of eukaryotic transcription factors. The imino proton exchange study has been performed for the DNA duplex containing the consensus DNA-binding site for the AtTCP11 transcription factor. The first two base pairs in the consensus 5'-GTGGG-3' sequence are relatively very unstable but lead to greater stabilization of the neighboring two G C base pairs. These unique dynamic features of the five base pairs in the consensus DNA sequence might play crucial roles in the effective DNA binding of the AtTCP11 protein.

Structural characterization of the putative DNA-binding domain of CP2c and its relevance to zinc binding

  • Ryu, Ki-Sung;Jo, Ku-Sung;Kim, Na-Young;Jeon, Eun-Jae;Park, Sung Jean;Kim, Hyun-Hwi;Kim, Eun-Hee;Kim, Chan-Gil;Kim, Chul Geun;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.20-25
    • /
    • 2019
  • The transcription factor CP2c has been recently validated as an oncogenic protein that can serve as a promising target for anticancer therapy. We have recently documented that a recombinant protein corresponding to the putative DNA-binding region (residues 63-244) of CP2c adopted two different conformers, one of which is dominated by zinc binding. However, in the present study, a longer construct encompassing residues 63-302 appeared to form a single structural domain. This domain could be considered to adopt a functionally relevant fold, as the known specific binding of a dodecapeptide to this protein was evident. Hence, the residues 63-302 region rather than 63-244 can be regarded as a natively folded structural domain of CP2c. In addition, it was confirmed that zinc ions can bind to this putative DNA-binding domain of CP2c, which resulted in reduced stability of the protein. In this context, it is suggested that the mode of action of CP2c would resemble that of tumor suppressor p53.

Leucine Zipper as a Fine Tuner for the DNA Binding; Revisited with Molecular Dynamics Simulation of the Fos-Jun bZIP Complex

  • 최용훈;양철학;김현원;정선호
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1319-1322
    • /
    • 1999
  • Leucine zipper dynamically tunes the degree of bifurcation of the DNA binding segments in the basic region of the Fos-Jun bZIP complex. Molecular dynamics simulation indicated that site-specific mutagenesis of conserved leucine residues inside the leucine zipper domain caused the change of dynamic behavior of the basic region, and efficient DNA binding occurs only within a certain range of distance between the two DNA binding segments in the basic region. Distribution of α-helices in the hinge region is also suggested to influence the bifurcation of the DNA binding segments.

The Role of DNA Binding Domain in hHSF1 through Redox State (산화환원에 따른 hHSF1의 DNA binding domain의 역할)

  • Kim, Sol;Hwang, Yun-Jeong;Kim, Hee-Eun;Lu, Ming;Kim, An-D-Re;Moon, Ji-Young;Kang, Ho-Sung;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1052-1059
    • /
    • 2006
  • The heat shock response is induced by environmental stress, pathophysiological state and non-stress conditions and wide spread from bacteria to human. Although translations of most proteins are stopped under a heat shock response, heat shock proteins (HSPs) are produced to protect cell from stress. When heat shock response is induced, conformation of HSF1 was changed from monomer to trimer and HSF1 specifically binds to DNA, which was called a heat shock element(HSE) within the promoter of the heat shock genes. Human HSF1(hHSFl) contains five cysteine(Cys) residues. A thiol group(R-SH) of Cys is a strong nucleophile, the most readily oxidized and nitrosylated in amino acid chain. This consideration suggests that Cys residues may regulate the change of conformation and the activity of hHSF1 through a redox-dependent thiol/disulfide exchange reaction. We want to construct role of five Cys residues of hHSF by redox reagents. According to two studies, Cys residues are related to trimer formation of hHSF1. In this study, we want to demonstrate the correlation between structural change and DNA-binding activity of HSF1 through forming disulfide bond and trimerization. In this results, we could deduce that DNA binding activity of DNA binding domain wasn't affected by redox for always expose outside to easily bind to DNA. DNA binding activity of wild-type HSF's DNA binding domain was affected by conformational change, as conformational structure change (trimerization) caused DNA binding domain.

Temperature dependent hydrogen exchange study of DNA duplexes containing binding sites for Arabidopsis TCP transcription factors

  • Kim, Hee-Eun;Choi, Yong-Geun;Lee, Ae-Ree;Seo, Yeo-Jin;Kwon, Mun-Young;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.52-57
    • /
    • 2014
  • The TCP domain is a DNA-binding domain present in plant transcription factors and plays important roles in various biological functions. The hydrogen exchange rate constants of the imino protons were determined for the three DNA duplexes containing the DNA-binding sites for the TCP11, TCP15, and TCP20 transcription factors using NMR spectroscopy. The M11 duplex displays unique hydrogen exchange property of the five base pairs in the first binding site (5'-GTGGG-3'). However, the M15 and M20 duplexes lead to clear changes in thermal stabilities of these five base pairs. The unique dynamic features of the five base pairs in the first binding site might play crucial roles in the sequence-specific DNA binding of the class I TCP transcription factors.