• Title/Summary/Keyword: DO gradient

Search Result 308, Processing Time 0.027 seconds

A study on the Effective Utilization of Temperature Logging Data for Calculating Geothermal Gradient (지온경사 산출을 위한 효율적인 온도검층자료 이용방법 연구)

  • 김형찬
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.503-517
    • /
    • 1999
  • The purpose of this study is to verfify a more effecive techique for calculating geothermal gradient. this study examines 370 data of temperature-logging having been collected since 1985. The daya are divided into three different grades grades according to the type of temperature-depth plots: 204 data show typical linear gradient (Grade A); 126 data do not explicitily show the gradient becase of various external effects such as water flow (Grade B); and the rest 40 data do not show the gradient at all (Grade D). The new technique for calculating geothermal gradient is to be required to use Greade-B data more effctiviely. This new technique includes (1) calculating the independer depth of atmospheric temperature in the earth; (2) drawing a distribution map of subsurface tempurature by using the distribution map of subsurface temperature by using Grade-A data at the independent depth; and (3) recalculating geothermal gradient of Grade-B data by using the distrbution map of subsurface temperature, borehole depth, and bottom temperature of Grade-B data by using the distribution map of subsurface temperature, borehole depth, and bottom temperature of Grade-B data. As a result, 330 data-both Grade-A and Grade-B data--can be used to draw a distribution map of hot spradient. The map clearly distinguishes anomaly areas, and helps interpret their relations to the distribution of hot springs, geology, geological structures, and geophysical anomaly areas. These new results reveal that the average of geothermal in south Korea is 25.6$^{\circ}C$/km, when calculated to the Kriging method.

  • PDF

Distribution of Salinity and Temperature due to the Freshwater Discharge in the Yeongsan Estuary in the Summer of 201 (2010년 여름 담수방류에 의한 영산강 하구의 염분 및 수온 분포 변화)

  • Park, Hyo-Bong;Kang, Kiryong;Lee, Guan-Hong;Shin, Hyun-Jung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.139-148
    • /
    • 2012
  • The short-term variation of salinity and temperature in a dyked estuarine environment is mainly controlled by the freshwater discharge from the dyke. We examined the distribution of salinity and temperature by the freshwater discharge in the Yeongsan River estuary using the CTD data obtained from 8 stations through three surveys in June (weak discharge) and August (intensive discharge), 2010. During the weak discharge in June, the surface salinity showed 30-32.5 psu and its horizontal gradient was relatively high around Goha-do (0.25~0.32 psu/km). On the other hand, the salinity of the bottom layer was almost constant in the range of 33 psu. Water temperature ranged $19{\sim}21^{\circ}C$ and displayed higher gradient in north-south direction than the gradient of east-west direction. During the intensive freshwater discharge on August 12, the salinity dropped to 9~26 psu. The maximum horizontal gradient of surface salinity reached 3.8 psu/km in the north of Goha-do where the strong salinity front was formed, and the horizontal salinity gradient of bottom layer was 0.28 psu/km. The horizontal gradient of water temperature was $-0.45^{\circ}C/km$ in the surface and $-0.12^{\circ}C/km$ in the bottom with high surface temperature near the dyke and decreasing gradually to the river mouth. After 3 days of the intensive discharge ($3^{rd}$ survey), the surface salinity increased to 22~26 psu. However, there still existed relatively high horizontal gradient around Goha-do. In the mean time, the bottom salinity decreased to 26.5~27.5 psu, but its gradient was not big as much as the surface gradient. According to time series of CTD profile near the dyke, the discharged fresh water jetted down temporarily and then recovered gradually with the recovering speed of 0.4 m/hour for the discharge case of $13{\times}10^6$ ton. Due to the combined effects of freshwater discharge and surface heating during the summer of 2010, the Yeongsan estuary, in general, underwent intensified vertical stratification, which in turn caused the inhibition of vertical mixing, especially inside area of estuary. Based on the spatial distribution of salinity and temperature, the Yeongsan estuary can be divided into three regions: the Goha-do area with strong horizontal gradient of salinity and temperature, inner estuary from Goha-do to the dyke with low salinity, and outer estuary from Goha-do to the coasts with relatively high salinity.

THE GRADIENT FLOW EQUATION OF RABINOWITZ ACTION FUNCTIONAL IN A SYMPLECTIZATION

  • Urs Frauenfelder
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.375-393
    • /
    • 2023
  • Rabinowitz action functional is the Lagrange multiplier functional of the negative area functional to a constraint given by the mean value of a Hamiltonian. In this note we show that on a symplectization there is a one-to-one correspondence between gradient flow lines of Rabinowitz action functional and gradient flow lines of the restriction of the negative area functional to the constraint. In the appendix we explain the motivation behind this result. Namely that the restricted functional satisfies Chas-Sullivan additivity for concatenation of loops which the Rabinowitz action functional does in general not do.

A laminated composite plate finite element a-priori corrected for locking

  • Filho, Joao Elias Abdalla;Belo, Ivan Moura;Pereira, Michele Schunemann
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.603-633
    • /
    • 2008
  • A four-node plate finite element for the analysis of laminated composites which is developed using strain gradient notation is presented. The element is based on a first-order shear deformation theory and on the equivalent lamina assumption. Strains and stresses can be calculated at different points through the thickness of the plate. They are averaged values due to the equivalent lamina assumption. A shear correction factor is used as the transverse shear strain is taken to be constant over the plate thickness while its actual variation is parabolic. Strain gradient notation, which is physically interpretable, allows for the detailed a-priori analysis of the finite element model. The polynomial expansions are inspected and spurious terms responsible for modeling errors are identified in the shear strains polynomial expansions. The element is corrected by simply removing the spurious terms from the shear strains expansions. The element is implemented into a FORTRAN finite element code in two versions; namely, with and without spurious terms. Results are compared to show the effects of the spurious terms on the solutions. It is also shown that a refined mesh composed of corrected elements provides solutions which approximate very well the analytical solutions, validating the procedure.

Mercury Fluxes from the Nan-Ji-Do Area of Seoul -Application of Micrometerorological Methods (미기상학적 기법을 응용한 난지도지역이 수은교환율 측정연구)

  • 김민영;김기현;이강웅;정일현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.585-594
    • /
    • 2000
  • Through an application of Micrometerorological methods, we conducted measurements of Hg fluxes from Nan-Ji-Do which is well known as one of the major local areal sources in Seoul metropolitan area during Match/April of 2000. In the course of our study, we determined the concentration gradients of total gaseous Hg(between 20 and 2000 cm heights) and combined these data with Micrometerorological components to derive is fluxes. It turned out that emission from and dry deposition to soil surfaces occurred at the ratio of 72:27 from a total of 271 hourly measurements. The validity of measured concentration gradients( or resulting fluxes) was evaluated in terms of percent gradient. Accordingly, about more than 95% of gradient data derived were statistically significant. The mean fluxes of Hg across soil-air interface, when computed using the concentrations gradients and relevant parameters, were found at 253(during emission) and -846ng/$m^2$/h(during dry deposition) The occurrences of abnormalously high exchange rates appear to be the combined effects of enormously high gradient values and high transfer coefficients. While the emissions of Hg occurred constantly during the whole study periods, the occurrences of dry deposition events were observed most intensively during very limited time periods(3/29 and 4/3). The results of our study cleary indicated that the studied area is a strong local areal source, while exhibiting great potential as a major sink simultaneously.

  • PDF

Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection

  • Jia-Qin Xu;Gui-Lin She;Yin-Ping Li;Lei-Lei Gan
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.795-811
    • /
    • 2023
  • When studying the resonance problem of nanoplates, the existing papers do not consider the influences of geometric nonlinearity and initial geometric imperfection, so this paper is to fill this gap. In this paper, based on the nonlocal strain gradient theory (NSGT), the nonlinear resonances of functionally graded (FG) nanoplates with initial geometric imperfection under different boundary conditions are established. In order to consider the small size effect of plates, nonlocal parameters and strain gradient parameters are introduced to expand the assumptions of the first-order shear deformation theory. Subsequently, the equations of motion are derived using the Euler-Lagrange principle and solved with the help of perturbation method. In addition, the effects of initial geometrical imperfection, functionally graded index, strain gradient parameter, nonlocal parameter and porosity on the nonlinear forced vibration behavior of nanoplates under different boundary conditions are discussed.

Iterative Image Restoration Based on Wavelets for De-Noising and De-Ringing (잡음과 오류제거를 위한 웨이블렛기반 반복적 영상복원)

  • Lee Nam-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.271-280
    • /
    • 2004
  • This paper presents a new iterative image restoration algorithm with removal of boundary/object-oriented ringing, The proposed method is based on CGM(Conjugate Gradient Method) iterations with inter-wavelet shrinkage. The proposed method provides a fast restoration as much as CGM, while having adaptive do-noising and do-ringing by using wavelet shrinkage. In order to have effective do-noising and do-ringing simultaneously, the proposed method uses a space-dependent shrinkage rule. The improved performance of the proposed method over more traditional iterative image restoration algorithms such as LR(Lucy-Richardson) and CGM in do-noising and do-ringing is shown through numerical experiments.

  • PDF

Robust Object Detection Algorithm Using Spatial Gradient Information (SG 정보를 이용한 강인한 물체 추출 알고리즘)

  • Joo, Young-Hoon;Kim, Se-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.422-428
    • /
    • 2008
  • In this paper, we propose the robust object detection algorithm with spatial gradient information. To do this, first, we eliminate error values that appear due to complex environment and various illumination change by using prior methods based on hue and intensity from the input video and background. Visible shadows are eliminated from the foreground by using an RGB color model and a qualified RGB color model. And unnecessary values are eliminated by using the HSI color model. The background is removed completely from the foreground leaving a silhouette to be restored using spatial gradient and HSI color model. Finally, we validate the applicability of the proposed method using various indoor and outdoor conditions in a complex environments.

Design Efforts of PAL XFEL RF Components to Reduce RF Breakdown Due to Surface Electric Gradient in High Power Operation

  • Ju, Yeong-Do;Park, Yong-Jeong;Lee, Heung-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.239-239
    • /
    • 2013
  • The peak klystron power for the PAL (Pohang Accelerator Laboratory) XFEL (X-ray Free Electron Laser) is up to 80 MW which is higher than that of PLS-II LINAC. To prevent the RF breakdown such a high power operation, some of RF components need to be redesigned to reduce the surface electric field gradient to be less than the breakdown gradient at the vacuum-metal surface. For instances, the redesign of the Stanford Linear Accelerator Energy Doubler (SLED) system, the directional coupler and 3dB power splitter using the finite-difference time-domain (FDTD) simulation will be presented.

  • PDF

Variation in leaf functional traits of the Korean maple (Acer pseudosieboldianum) along an elevational gradient in a montane forest in Southern Korea

  • Nam, Ki Jung;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.278-284
    • /
    • 2018
  • Plant functional traits have been shown to be useful to understand how and why ecosystems and their components vary across environmental heterogeneity or gradients. This study investigated how plant functional (leaf) traits vary according to an elevation-associated environmental gradient. Environmental gradients (mean annual temperature and precipitation) were quantified, and leaf traits (leaf area, specific leaf area, leaf nitrogen, leaf phosphorus, leaf carbon, and leaf C/N ratio) of the understory woody plant species Acer pseudosieboldianum were examined across an elevational gradient ranging from 600 to 1200 m in a Baegunsan Mountain in Gwangyang-si, Jeollanam-do, South Korea. The results showed that mean annual temperature and precipitation decreased and increased along with elevation, respectively. Leaf area of the plant species decreased slightly with increasing elevation, while specific leaf area did not differ significantly. Leaf nutrients (nitrogen, phosphorus, and carbon concentrations) were higher at high elevations, but leaf C/N ratio decreased with elevation.