• Title/Summary/Keyword: DS-OCDMA

Search Result 2, Processing Time 0.024 seconds

Long Distance and High Resolution Three-Dimensional Scanning LIDAR with Coded Laser Pulse Waves (레이저 펄스 부호화를 이용한 원거리 고해상도 3D 스캐닝 라이다)

  • Kim, Gunzung;Park, Yongwan
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.133-142
    • /
    • 2016
  • This paper presents the design and simulation of a three-dimensional pixel-by-pixel scanning light detection and ranging (LIDAR) system with a microelectromechanical system (MEMS) scanning mirror and direct sequence optical code division multiple access (DS-OCDMA) techniques. It measures a frame with $848{\times}480$ pixels at a refresh rate of 60 fps. The emitted laser pulse waves of each pixel are coded with DS-OCDMA techniques. The coded laser pulse waves include the pixel's position in the frame, and a checksum. The LIDAR emits the coded laser pulse waves periodically, without idle listening time to receive returning light at the receiver. The MEMS scanning mirror is used to deflect and steer the coded laser pulse waves to a specific target point. When all the pixels in a frame have been processed, the travel time is used by the pixel-by-pixel scanning LIDAR to generate point cloud data as the measured result.

Laser Power Beaming Based Wireless Power Transmission System for Multiple Charging of Long-distance Located Electric Vehicle (원거리 전기 자동차의 다중 충전을 위한 레이저 파워 빔 기반의 무선 전력 전송 시스템)

  • Eom, Jeongsook;Kim, Gunzung;Choi, Jeonghee;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.379-392
    • /
    • 2016
  • This paper presents the design and simulation of a laser power beaming (LPB) system for an electric vehicle that establishes an optimal power transmission path based on the received signal strength. The LPB system is possible to transfer power from multiple transmitters to a single receiver according to the characteristics of the laser and the solar panel. When the laser beams of multiple transmitters aim at a solar panel at the same time, the received power is the sum of all energy at a solar panel. Our proposed LPB system consists of multiple transmitters and multiple receivers. The transmitter sends its power characteristics as optically coded pulses with a class 1 laser beam and powers as a high-intensity laser beam. By using the attenuated power level, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters. Throughout the simulation, we verified the possibility that different LPB receivers were achieved their required power by the optimal allocation of the transmitter among the various transmitters.