• Title/Summary/Keyword: DSP %28Digital Signal Processor%29

Search Result 2, Processing Time 0.014 seconds

Design of Chip Set for CDMA Mobile Station

  • Yeon, Kwang-Il;Yoo, Ha-Young;Kim, Kyung-Soo
    • ETRI Journal
    • /
    • v.19 no.3
    • /
    • pp.228-241
    • /
    • 1997
  • In this paper, we present a design of modem and vocoder digital signal processor (DSP) chips for CDMA mobile station. The modem chip integrates CDMA reverse link modulator, CDMA forward link demodulator and Viterbi decoder. This chip contains 89,000 gates and 29 kbit RAMs, and the chip size is $10 mm{\times}10.1 mm$ which is fabricated using a $0.8{\mu}m$ 2 metal CMOs technology. To carry out the system-level simulation, models of the base station modulator, the fading channel, the automatic gain control loop, and the microcontroller were developed and interfaced with a gate-level description of the modem application specific integrated circuit (ASIC). The Modem chip is now successfully working in the real CDMA mobile station on its first fab-out. A new DSP architecture was designed to implement the Qualcomm code exited linear prediction (QCELP) vocoder algorithm in an efficient way. The 16 bit vocoder DSP chip has an architecture which supports direct and immediate addressing modes in one instruction cycle, combined with a RISC-type instruction set. This turns out to be effective for the implementation of vocoder algorithm in terms of performance and power consumption. The implementation of QCELP algorithm in our DSP requires only 28 million instruction per second (MIPS) of computation and 290 mW of power consumption. The DSP chip contains 32,000 gates, 32K ($2k{\times}16\;bit$) RAM, and 240k ($10k{\times}24\;bit$) ROM. The die size is $8.7\;mm{\times}8.3\;mm$ and chip is fabricated using $0.8\;{\mu}m$ CMOS technology.

  • PDF

Real-time implementation of the 2.4kbps EHSX Speech Coder Using a $TMS320C6701^TM$ DSPCore ($TMS320C6701^TM$을 이용한 2.4kbps EHSX 음성 부호화기의 실시간 구현)

  • 양용호;이인성;권오주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.962-970
    • /
    • 2004
  • This paper presents an efficient implementation of the 2.4 kbps EHSX(Enhanced Harmonic Stochastic Excitation) speech coder on a TMS320C6701$^{TM}$ floating-point digital signal processor. The EHSX speech codec is based on a harmonic and CELP(Code Excited Linear Prediction) modeling of the excitation signal respectively according to the frame characteristic such as a voiced speech and an unvoiced speech. In this paper, we represent the optimization methods to reduce the complexity for real-time implementation. The complexity in the filtering of a CELP algorithm that is the main part for the EHSX algorithm complexity can be reduced by converting program using floating-point variable to program using fixed-point variable. We also present the efficient optimization methods including the code allocation considering a DSP architecture and the low complexity algorithm of harmonic/pitch search in encoder part. Finally, we obtained the subjective quality of MOS 3.28 from speech quality test using the PESQ(perceptual evaluation of speech quality), ITU-T Recommendation P.862 and could get a goal of realtime operation of the EHSX codec.c.