• 제목/요약/키워드: DVL

검색결과 56건 처리시간 0.025초

Coexpression and protein-protein complexing of DIX domains of human Dvl1 and Axin1 protein

  • Choi, Seung-Hye;Choi, Kyung-Mi;Ahn, Hyung-Jun
    • BMB Reports
    • /
    • 제43권9호
    • /
    • pp.609-613
    • /
    • 2010
  • The Dvl and Axin proteins, which are involved in the Wnt signaling pathway, each contain a conserved DIX domain in their sequences. The DIX domain mediates interaction between Dvl and Axin, which together play an important role in signal transduction. However, the extremely low production of DIX domain fragments in E. coli has prevented more widespread functional and structural studies. In this study, we demonstrate that the DIX domains of Dvl and Axin are expressed noticeably in a multi-cistronic system but not in a mono-cistronic system. Formation of the $DIX_{Dvl1}-DIX_{Axin1}$ complex was investigated by affinity chromatography, SEC and crystallization studies. Unstable DIX domains were stabilized by complexing with counterpart DIX domains. The results of the preliminary crystallization and diffraction of the $DIX_{Dvl1}-DIX_{Axin1}$ complex may prove useful for further crystallographic studies.

수중운동체 복합항법 성능 향상을 위한 DVL/RPM 기반의 속도 필터 설계 (DVL-RPM based Velocity Filter Design for a Performance Improvement Underwater Integrated Navigation System)

  • 유태석;윤선일
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.774-781
    • /
    • 2013
  • The purpose of this paper is to design a DVL-RPM based VKF (Velocity Kalman Filter) design for a performance improvement underwater integrated navigation system. The proposed approach relies on a VKF, augmented by a altitude from Echo-sounder based switching architecture to yield robust performance, even when DVL (Doppler Velocity Log) exceeds the measurement range and the measured value is unable to be valid. The proposed approach relies on two parts: 1) Indirect feedback navigation Kalman filter design, 2) VKF design. To evaluate proposed method, we compare the results of the VKF aided navigation system with simulation result from a PINS (Pure Inertial Navigation System) and conventional INS-DVL method. Simulations illustrate the effectiveness of the underwater navigation system assisted by the additional DVL-RPM based VKF in underwater environment.

Expression of DDR1 and DVL1 in Invasive Ductal and Lobular Breast Carcinoma does not Correlate with Histological Type, Grade and Hormone Receptor Status

  • Ameli, Fereshteh;Rose, Isa Mohd;Masir, Noraidah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2385-2390
    • /
    • 2015
  • Background: Invasive ductal (IDC) and lobular (ILC) carcinomas are the common histological types of breast carcinoma which are difficult to distinguish when poorly differentiated. Discoidin domain receptor (DDR1) and Drosophila dishevelled protein (DVL1) were recently suggested to differentiate IDC from ILC. Objectives: To assess the expression of DDR1 and DVL1 and their association with histological type, grading and hormonal status of IDC and ILC. Materials and Methods: This cross sectional study was conducted on IDC and ILC breast tumours. Tumours were immunohistochemically stained for (DDR1) and (DVL1) as well as estrogen receptor (ER), progesterone receptor (PR) and C-erbB2 receptor. Demographic data including age and ethnicity were obtained from patient records. Results: A total of 51 cases (30 IDCs and 21 ILCs) were assessed. DDR1 and DVL1 expression was not significantly associated with histological type (p=0.57 and p=0.66 respectively). There was no association between DDR1 and DVL1 expression and tumour grade (p=0.32 and p=1.00 respectively), ER (p=0.62 and 0.50 respectively), PR (p=0.38 and p=0.63 respectively) and C-erbB2 expression (p=0.19 and p=0.33 respectively) in IDC. There was no association between DDR1 and DVL1 expression and tumour grade (p=0.52 and p=0.33 respectively), ER (p=0.06 and p=0.76 respectively), PR (p=0.61 and p=0.43 respectively) and C-erbB2 expression (p=0.58 and p=0.76 respectively) in ILC. Conclusions: This study revealed that DDR1 and DVL1 are present in both IDC and ILC regardless of the tumour differentiation. More studies are needed to assess the potential of these two proteins in distinguishing IDC from ILC in breast tumours.

강결합 방식의 INS/DVL/RPM 복합항법시스템 설계 (Design of Tightly Coupled INS/DVL/RPM Integrated Navigation System)

  • 유태석;김문환;윤선일;김대중
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.470-478
    • /
    • 2019
  • Because the global positioning system (GPS) is not available in underwater environments, an inertial navigation system (INS)/doppler velocity log (DVL) integrated navigation system is generally implemented. In general, an INS/DVL integrated system adopts a loosely coupled method. However, in this loosely coupled method, although the measurement equation for the filter design is simple, the velocity of the body frame cannot be accurately measured if even one of the DVL transducer signals is not received. In contrast, even if only one or two velocities are measured by the DVL transducers, the tightly coupled method can utilize them as measurements and suppress the error increase of the INS. In this paper, a filter was designed to regenerate the measurements of failed transducers by taking advantage of the tightly coupled method. The regenerated measurements were the normal DVL transducer measurements and the estimated velocity in RPM. In order to effectively estimate the velocity in RPM, a filter was designed considering the effects of the tide. The proposed filter does not switch all of the measurements to RPM if the DVL transducer fails, but only switches information from the failed transducer. In this case, the filter has the advantage of being able to be used as a measurement while continuously estimating the RPM error state. A Monte Carlo simulation was used to determine the performance of the proposed filters, and the scope of the analysis was shown by the standard deviation ($1{\sigma}$, 68%). Finally, the performance of the proposed filter was verified by comparison with the conventional tightly coupled method.

UUV의 DVL 항법을 위한 자세 추정 방법 비교 (Comparison of Attitude Estimation Methods for DVL Navigation of a UUV)

  • 정석기;고낙용;최현택
    • 로봇학회논문지
    • /
    • 제9권4호
    • /
    • pp.216-224
    • /
    • 2014
  • This paper compares methods for attitude estimation of a UUV(Unmanned Underwater Vehicle). Attitude estimation plays a key role in underwater navigation using DVL(Doppler Velocity Log). The paper proposes attitude estimation methods using EKF(Extended Kalman Filter), UKF(Unscented Kalman Filter), and CF(Complementary Filter). It derives methods using the measurements from MEMS-AHRS(Microelectromechanical Systems-Attitude Heading Reference System) and DVL. The methods are used for navigation in a test pool and their navigation performance is compared. The results suggest that even if there is no measurement relative to some absolute landmarks, DVL-only navigation can be useful for navigation in a limited time and range.

융합된 다중 센서와 EKF 기반의 무인잠수정의 항법시스템 설계 (Navigation System of UUV Using Multi-Sensor Fusion-Based EKF)

  • 박영식;최원석;한성익;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제22권7호
    • /
    • pp.562-569
    • /
    • 2016
  • This paper proposes a navigation system with a robust localization method for an underwater unmanned vehicle. For robust localization with IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and depth sensors, the EKF (Extended Kalman Filter) has been utilized to fuse multiple nonlinear data. Note that the GPS (Global Positioning System), which can obtain the absolute coordinates of the vehicle, cannot be used in the water. Additionally, the DVL has been used for measuring the relative velocity of the underwater vehicle. The DVL sensor measures the velocity of an object by using Doppler effects, which cause sound frequency changes from the relative velocity between a sound source and an observer. When the vehicle is moving, the motion trajectory to a target position can be recorded by the sensors attached to the vehicle. The performance of the proposed navigation system has been verified through real experiments in which an underwater unmanned vehicle reached a target position by using an IMU as a primary sensor and a DVL as the secondary sensor.

USBL, DVL과 선수각 측정신호를 융합한 심해 무인잠수정의 항법시스템 (Navigation System for a Deep-sea ROV Fusing USBL, DVL, and Heading Measurements)

  • 이판묵;심형원;백혁;김방현;박진영;전봉환;유승열
    • 한국해양공학회지
    • /
    • 제31권4호
    • /
    • pp.315-323
    • /
    • 2017
  • This paper presents an integrated navigation system that combines ultra-short baseline (USBL), Doppler velocity log (DVL), and heading measurements for a deep-sea remotely operated vehicle, Hemire. A navigation model is introduced based on the kinematic relation of the position and velocity. The system states are predicted using the navigation model and corrected with the USBL, DVL, and heading measurements using the Kalman filter. The performance of the navigation system was confirmed through re-navigation simulations with the measured data at the Southern Mariana Arc submarine volcanoes. Based on the characteristics of the measurements, the design process for the parameters of the system modeling error covariance, measurement error covariance, and initial error covariance are presented. This paper reviews the influence of the outliers and blackout of the USBL and DVL measurements, and proposes an outlier rejection algorithm that is robust to USBL blackout. The effectiveness of the method is demonstrated with re-navigation for the data that includes USBL blackouts.

복합항법센서를 갖는 수중운동체의 정밀 유도제어 정확도 분석 (Effectiveness Analysis for the Precision Guided and Controled Underwater Vehicle system with Integrated Navigation System)

  • 한용수;현철;정동민
    • 한국정보통신학회논문지
    • /
    • 제19권11호
    • /
    • pp.2751-2757
    • /
    • 2015
  • 유도제어 시스템 체계 개발의 초기단계에는 운용 효과도 도출 및 요구사항 적합성 검토를 통한 체계 개략사양도출을 위해 효과도 분석을 수행한다. 본 논문에서는 M&S (Modeling & Simulation)를 활용하여 항법센서 성능과 환경영향(조류의 세기와 방향)에 따른 유도제어 시스템의 목표점 도달 정확도에 대한 운용 효과도 분석을 수행한다. 효과도 분석을 위해 6자유도 운동모델, 환경모델, 유도항법제어모델을 구성한다. 항법센서는 관성항법센서(Inertia Navigation Sensor, INS)와 도플러 속도센서(Doppler Velocity Log, DVL)로 구성하고, 환경변수는 조류(current)의 세기와 방향이다. 수치 시뮬레이션 결과는 CEP(Circular Error Probability)와 분산을 이용한 확률분석으로 분석한다. 효과도 분석 결과는 항법센서의 가격을 고려한 비용 대비 효율 분석에 활용하여 가격 대비 높은 성능의 센서 사양을 도출할 수 있다. 본 논문에서는 높은 수준의 INS와 낮은 수준의 DVL을 이용하면 가격 대비 성능이 높은 복합항법센서를 구성한다는 것을 보여준다.

도플러 속도계(DVL)를 위한 광대역 수중 음향 트랜스듀서 (Broad-Band Underwater Acoustic Transducer for Doppler Velocity Log)

  • 윤철호;이영필;고낙용;문용선
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.755-759
    • /
    • 2013
  • A broad-band underwater acoustic transducer that uses thickness vibration mode, derived from a disk type piezoelectric ceramic, has been proposed and designed for DVL (Doppler Velocity Log). Three different types of acoustic transducer were evaluated with respect to the transmitting voltage response, receiving voltage sensitivity and bandwidth of the transducer. The effect of the acoustic impedance matching layer and backing layer is discussed. The results demonstrated that three matching layer with lossy backing layer is the best configuration for underwater transducer. The trial underwater acoustic transducer with three matching layer has a frequency bandwidth of 55%, maximum transmitting voltage response of 200 dB and a maximum receiving voltage sensitivity of -187.3 dB.

자이로 도플러 센서와 USBL을 통한 수중체 위치추적 알고리즘개발 (Development of Underwater Vehicle Position Tracking Algorithm by using a Gyro-Doppler Sensor and Ultra Short Base Line)

  • 김덕진;박동원;박연식
    • 한국정보통신학회논문지
    • /
    • 제10권11호
    • /
    • pp.1973-1977
    • /
    • 2006
  • 본 논문에서는 IMU(Inertial Motion Unit), DVL(Doppler Velocity Log), USBL(Ultra Short Base Line) DGPS(Differential Global Positioning System) 등의 센서로부터 취득된 데이터를'융합하여 ROV(Remotely Operated Vehicle)와 AUV(Autonomous Underwater Vehicle)와 같은 수중체의 위치를 지구 전체영역에서 추정하기 위한 기본적인 알고리즘을 다루고 있다. 본 논문에 소개된 알고리즘은 6,000m급 과학 조사용 심해무인잠수정인 해미래[1]의 수중 위치추적에 사용될 예정이다.