• Title/Summary/Keyword: Dairy wastewater

Search Result 40, Processing Time 0.028 seconds

Dairy wastewater treatment using microalgae for potential biodiesel application

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.393-400
    • /
    • 2016
  • The aim of this study was to evaluate the biomass production and dairy wastewater treatment using Chlorella vulgaris. The results indicated that the maximum percentages of biochemical oxygen demand, chemical oxygen demand, suspended solids, total nitrogen, and total phosphorus removed were 85.61%, 80.62%, 29.10%, 85.47%, and 65.96%, respectively, in dairy effluent at 10 d. A maximum of 1.23 g/L dry biomass was obtained in 7 d. The biomass productivity was strongly influenced by the nutrient reduction in the dairy effluent. The biodiesel produced by the C. vulgaris in the dairy effluent was in good agreement with the American Society of Testing and Materials-D6751 and European Standards 14214 standards. Therefore, using dairy effluent for microalgal cultures could be a useful and practical strategy for an advanced, environmentally friendly treatment process.

Preliminary Studies for Efficient Treatment of Wastewater Milking Parlor in Livestock Farm (젖소 착유세정폐수의 효율적인 정화처리를 위한 기초연구)

  • Jang, Young Ho;Lee, Soo Moon;Kim, Woong Su;Kang, Jin Young
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.500-507
    • /
    • 2020
  • This study examined the wastewater at a livestock farm, and found that the dairy wastewater from the milking parlor had a lower concentration than the piggery wastewater, and that it was produced at a rate under 1.3 ㎥/day in a single farmhouse. The amount of dairy wastewater was determined based on the performance of the milking machine, the maintenance method of the milking parlor, and the amount of milk production allocated for each farmhouse, not by the area. The results confirmed that both dairy wastewater treatment processes, specifically those using Hanged Bio-Compactor (HBC) and Sequencing Batch Reactor (SBR), can fully satisfy the water quality standards of discharge. The dairy wastewater has a lower amount and concentration than piggery wastewater, meaning it is less valuable as liquid fertilizer, but it can be easily degraded using the conventional activated sludge process in a public sewage treatment plant. Therefore, discharging the dairy wastewater after individual treatment was expected to be a more reasonable method than consigning it to the centralized wastewater treatment plant. The effluent after the SBR process showed a lower degree of color than the HBC effluent, which was attributed to biological adsorption. In the case of the milking parlor in the livestock farm, the concentrations of the effluents obtained after HBC and SBR treatments both satisfied water quality standards for the discharge of public livestock wastewater treatment plants at 99% confidence intervals, and the concentrations of total nitrogen and phosphorous in untreated wastewater were even lower than the water quality standards of discharge. Therefore, we need to discuss strengthening the water quality standards to reduce environmental pollution.

Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar

  • Choi, Yong-Keun;Jang, Hyun Min;Kan, Eunsung;Wallace, Anna Rose;Sun, Wenjie
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.434-442
    • /
    • 2019
  • The present study investigated a novel calcium hydroxide-coated dairy manure-derived biochar (Ca-BC) for adsorption of phosphate from water and dairy wastewater. The Ca-BC showed much higher adsorption of phosphate than that of dairy manure-derived biochar. The Ca-BC possessed mainly the calcium hydroxide and various functional groups resulting in high reactivity between phosphate and calcium hydroxide in the Ca-BC. The adsorption of phosphate onto Ca-BC followed pseudo-second order kinetic and Freundlich isotherm models indicating chemisorptive interaction occurred on energetically heterogeneous surface of Ca-BC. The maximum adsorption capacity of the Ca-BC was higher than those of iron oxide and zinc oxide-coated biochars, but lower than those of CaO- and MgO-coated biochars. However, the Ca-BC showed high reactivity per surface area for adsorption of phosphate indicating importance of surface functionalization of biochar. On the other hand, the adsorption of phosphate in dairy wastewater on Ca-BC was lower than that in water owing to competition between other anions in wastewater and phosphate. Overall, the Ca-BC would be a low cost and effective adsorbent for recovery of phosphate from water and wastewater.

Industrial dairy wastewater purification by shear-enhanced membrane filtration: The effects of vibration

  • Kertesz, Szabolcs
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.73-86
    • /
    • 2014
  • Membrane fouling is a major challenge limiting the use of membrane applications. In this study high induced shear rates were utilized at the membrane surface in order to reduce the organic and inorganic scaling by using the torsional vibration of flat sheet membranes. The performances of a vibratory shear-enhanced processing (VSEP) system for the ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membrane filtration of industrial dairy wastewater were investigated. The vibration and non-vibration methods were compared with the same membrane and operational parameters during the purification of real dairy industrial process wastewater. In the initial experiments, short-term tests were carried out in which the effects of vibration amplitude, recirculation flow rate and transmembrane pressure were measured and compared. The permeate flux, turbidity, conductivity and chemical oxygen demand (COD) reduction of dairy wastewater were investigated by using UF, NF and RO membranes with vibration and non-vibration methods. In the subsequent experiments, concentration tests were also carried out. Finally, scanning electron microscopy (SEM) revealed that the vibration method gave a better performance, which can be attributed to the higher membrane shear rate, which reduces the concentration of solids at the membrane, and the transmission.

Evaluation for the simultaneous Removal of Organic Matters and Nutrients by the RBC and tapered Aeration Processes with Bacillus sp. for the high Strength of Dairy Wastewater (바실러스 미생물을 이용한 고농도 유가공 폐수처리에 있어서 유기물질과 영양염류의 동시제거에 대한 평가)

  • Lee, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.195-202
    • /
    • 2010
  • The evaluation of organic matters and nutrients removal was investigated for the synthetic wastewater and the high strength of dairy wastewater. Two different systems were performed for this research. System A composing of a single RBC with tapered aeration was fed with the synthetic wastewater for 74 days with 173L/day of influent, 200% of internal return and 100% of sludge return for the period 1 and 2. The feed conditions were maintained 346L/day of influent, 50% of internal return and sludge return for the period 3. The dairy wastewater was introduced to evaluate treatment efficiency for system B composing of dual RBCs and tapered aeration tanks for 50 days of experimental run time, in which hydraulic rates were maintained at the constant ratios of 346L/day, 50% of internal return and 50% of sludge return. The spiral string media made of nylon fibre was attached by Bacillus sp. in RBC for both systems. The specific area of string media was $1.4m^2$/m and biomass was maintained at the concentrations of 23g/m. The synthetic wastewater was supplied by 1,800mg/L of glucose, 500mg/L of $NH_4Cl$, and 500mg/L of $KH_2PO_4$ to system A. The dairy wastewater was supplied to system B from dairy production plant. The average influent concentrations were 1,334mg/L of BOD, 2,014mg/L of CODcr, 160mg/L of T-N, and 12mg/L of T-P in system A. The average influent concentrations of parameters were 1,006 mg/L for BOD, 1,875mg/L for $COD_{cr}$, 51.6mg/L for T-N and 8.9mg/L for T-P in system B. Results indicated that removal efficiencies of BOD and $COD_{cr}$ were more than 90% however, the removal efficiency of T-N was 87%, and that of T-P was 82% for system A. Removal efficiencies were 98.5% of BOD, 91.3% of nitrogen and 89% of phosphorus for system B. The removal efficiencies of organic matters, T-N and T-P were higher in system B than in system A. The effluent quality issued by the stringent national legislations for the discharge of the high strength of dairy products wastewater can be improved using sequential RBCsand tapered aeration reactors rather than a single RBC and tapered aeration reactors with Bacillus sp.

Electricity Generation from Dairy Wastewater Using Microbial Fuel Cell (미생물연료전지를 이용한 유가공 폐수로부터 전기생산)

  • Roh, Sung-Hee;Lee, Sung-Wook;Kim, Kyung-Ryang;Kim, Sun-Il
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.297-301
    • /
    • 2012
  • Microbial fuel cell (MFC) is the major of bio-electrochemical system which can convert biomass spontaneously into electricity through the metabolic activity of the microorganisms. In this study, we used an activated sludge as a microbial inoculum and then investigated the feasibility of using dairy wastewater as a possible substrate for generating electricity in MFC. To examine the performance of MFC as power generator, the characteristics on cell potentials, power density, cyclic voltammetric analysis and sustainable power estimation were evaluated for dairy wastewater. The maximum power density of $40\;mW/m^2$was achieved when the dairy wastewater containing 2650 mg/L COD was used, leading to the removal of 88% of the COD. The results from this study demonstrate the feasibility of using MFC technology to generate electricity while simultaneously treating dairy wastewater effectively.

Distribution of Antibiotic-Resistant Bacteria in the Livestock Farm Environments

  • Kim, Youngji;Seo, Kun-Ho;Kim, Binn;Chon, Jung-Whan;Bae, Dongryeoul;Yim, Jin-Hyeok;Kim, Tae-Jin;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • The surroundings of livestock farms, including dairy farms, are known to be a major source of development and transmission of antibiotic-resistant bacteria. To control antibioticresistant bacteria in the livestock breeding environment, farms have installed livestock wastewater treatment facilities to treat wastewater before discharging the final effluent in nearby rivers or streams. These facilities have been known to serve as hotspots for inter-bacterial antibiotic-resistance gene transfer and extensively antibiotic-resistant bacteria, owing to the accumulation of various antibiotic-resistant bacteria from the livestock breeding environment. This review discusses antibiotic usage in livestock farming, including dairy farms, livestock wastewater treatment plants as hotspots for antibiotic resistant bacteria, and nonenteric gram-negative bacteria from wastewater treatment plants, and previous findings in literature.

Cultivable Bacterial Community Analysis of Dairy Activated Sludge for Value Addition to Dairy Wastewater

  • Biswas, Tethi;Chatterjee, Debasmita;Barman, Sinchini;Chakraborty, Amrita;Halder, Nabanita;Banerjee, Srimoyee;Chaudhuri, Shaon Ray
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.585-595
    • /
    • 2019
  • Analysis of bacterial communities based on their 16S rDNA sequences revealed the predominance of Proteobacteria (Aeromonas sp., Acinetobacter sp. and Thaueraamino aromatica sp.) and uncultured bacterium in activated sludge from the effluent treatment plant (ETP) of Mother Dairy, Calcutta (India). Each isolate was used for bioremediation of dairy wastewater with simultaneous conversion of nitrogenous pollutants into ammonia. A consortium developed using seven of these isolates and three Bacillus strains from different environmental origins could reduce 93% nitrate with simultaneous production of ammonia (626 ㎍/100 ml) within 20 h in non-aerated, immobilized conditions as compared to 82% nitrate reduction producing 2.4 ㎍/100 ml ammonia in 96 h with extensive aeration in a conventional ETP. The treated ammonia-rich effluent could be used instead of freshwater and fertilizer during cultivation of mung bean with 1.6-fold increase in grain yield. The ETP with the surrounding agricultural land makes this process a zero liquid discharge technology for using the biofertilizer generated. In addition, the process requires minimal energy supporting sustained environmental health. This method is thus proposed as an alternative approach for small-scale dairy ETPs.

Continuous Production of Citric Acid from Dairy Wastewater Using Immobilized Aspergillus niger ATCC 9142

  • Kim, Se-Kwon;Park, Pyo-Jam;Byun, Hee-Guk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.89-94
    • /
    • 2002
  • The continuous production of citric acid from dairy wastewater was investigated using calcium-alginate immobilized Asrergillus niger ATCC 9142. The citric acid productivity and yield were strongly affected by the culture conditions. The optimal pH, temperature, and dilution rate were 3.0, 30$^{\circ}C$, and 0.025 h$\^$-1/, respectively. Under optimal culture conditions, the maximum productivity, concentration, and yield of citric acid produced by the calcium-alginate immobilized Aspergillus niger were 160 mg L$\^$-1/ h$\^$-1/, 4.5 g/L, and 70.3%, respectively, The culture was continuously perfored for 20 days without any apparent loss in citric acid productivity. Conversely, under the same conditions with a batch shake-flask culture, the maximum productivity, citric acid concentration, and yield were only 63.3 mg L$\^$-1/h$\^$-1/, 4.7 g/L and 51.4%, respectively, Therefore, the results suggest that the bioreactor used in this study could be potentially used for continuous citric acid production from dairy wastewater by applying calcium-alginate immobilized Aspergillus niger.

Reaction Characteristics of Dairy Wastewater through Aerobic Biodegradability Assessment (호기성 생분해도 평가를 통한 유가공 폐수의 반응특성)

  • Choi, Yong-Bum;Han, Dong-Joon;Kwon, Jae-Hyouk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.64-71
    • /
    • 2018
  • The purpose of this study is to investigate the characteristics of the substrate of dairy wastewater through aerobic biodegradation and to use the results as the basic data for the efficient treatment of dairy wastewater. The SCODcr of the part of the matter that consisted of readily biodegradable organics (Ss) was 84.2%, which is higher than those of seafood processing wastewater (75.8~77.9%) and pigpen wastewater (58.2%). The proportion of non-biodegradable organics (SI) ranged from 5.6% to 6.4%, and the proportion of inert organics (SIi) generated by microbial metabolism ranged from 3.6 to 3.7%. The content coefficient (YI) of the non-biodegradable dissolved organic matter was in the range of 0.092 to 0.099, and the generation coefficient (Yp) of the inert substance produced by the microbial metabolism was in the range of 0.039 to 0.040. The analysis results of the organic component coefficient showed that approximately 91.0% of the dissolved organic matter of the dairy wastewater was biodegradable, and approximately 92.5% of the dissolved organic matter was the Ss component. Furthermore, the proportion of biodegradable organic matter in the total organic matter (TCODcr) was 89.3%. The proportions of non-biodegradable organics (SI) and non-biodegradable suspended organics (XI) were 3.0% and 7.7%, respectively, which are lower than those in similar wastewater. This means that the milk processing wastewater has a high aerobic biodegradability.