• Title/Summary/Keyword: Damage

Search Result 24,859, Processing Time 0.045 seconds

Hierarchical neural network for damage detection using modal parameters

  • Chang, Minwoo;Kim, Jae Kwan;Lee, Joonhyeok
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.457-466
    • /
    • 2019
  • This study develops a damage detection method based on neural networks. The performance of the method is numerically and experimentally verified using a three-story shear building model. The framework is mainly composed of two hierarchical stages to identify damage location and extent using artificial neural network (ANN). The normalized damage signature index, that is a normalized ratio of the changes in the natural frequency and mode shape caused by the damage, is used to identify the damage location. The modal parameters extracted from the numerically developed structure for multiple damage scenarios are used to train the ANN. The positive alarm from the first stage of damage detection activates the second stage of ANN to assess the damage extent. The difference in mode shape vectors between the intact and damaged structures is used to determine the extent of the related damage. The entire procedure is verified using laboratory experiments. The damage is artificially modeled by replacing the column element with a narrow section, and a stochastic subspace identification method is used to identify the modal parameters. The results verify that the proposed method can accurately detect the damage location and extent.

Damage Assessment and Establishment of Damage Index for Reinforced Concrete Column (철근콘크리트기둥의 손상지표 설정과 손상도 평가)

  • Youn, IL-Ro;Kwon, Yong-Gil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.3
    • /
    • pp.149-155
    • /
    • 2007
  • Damage assessment and Damage index for RC members failed in flexure was investigated by using the nonlinear finite element analysis, included with nonlocal constitutive law, which is analyzed for the localization of the failure on the post-peak region. In the nonlcal constitutive law, The local strains obtained at gauss points were averaged over a particular length, i.e. characteristic length and it was used to evaluate the damage of RC column member. As the analysis results, The value of nonlocal strain shows less mesh sensibility. In the damage assessment, It was confirmed that evaluations of damage of RC member were able to use nonlocal compressive strain on a cover concrete and a core concrete of the member. Moreover it was confirmed that damage process for the statically indeterminate structure was able to evaluate the damage context of the component members of the structure.

  • PDF

Structural damage detection using a damage probability index based on frequency response function and strain energy concept

  • Bagherahmadi, Seyed Ahdiye;Seyedpoor, Seyed Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.327-336
    • /
    • 2018
  • In this study, an efficient damage index is proposed to identify multiple damage cases in structural systems using the concepts of frequency response function (FRF) matrix and strain energy of a structure. The index is defined based on the change of strain energy of an element due to damage. For obtaining the strain energy stored in elements, the columnar coefficients of the FRF matrix is used. The new indicator is named here as frequency response function strain energy based index (FRFSEBI). In order to assess the performance of the proposed index for structural damage detection, some benchmark structures having a number of damage scenarios are considered. Numerical results demonstrate that the proposed index even with considering noise can accurately identify the actual location and approximate severity of the damage. In order to demonstrate the high efficiency of the proposed damage index, its performance is also compared with that of the flexibility strain energy based index (FSEBI) provided in the literature.

Damage Evaluation of a Simply Supported Steel Beam Using Measured Acceleration and Strain Data (가속도 및 변형률 계측데이터를 이용한 철골 단순보 손상평가)

  • Park Soo-Yong;Park Hyo-Seon;Lee Hong-Min;Choi Sang-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.167-174
    • /
    • 2006
  • In this paper, the applicability of strain data to a strain-energy-based damage evaluation methodology in detecting damage in a beam-like structure is demonstrated. For the purpose of this study, one of the premier damage evaluation methodology based on modal amplitudes, the damage index method, is expanded to accomodate strain data, and the numerical and experimental verifications are conducted using numerical and experimental data. To compare the relative performance of damage detection, the damage evaluation using acceleration data is also performed for the same damage scenarios. The experimental strain and acceleration data are extracted from laboratory static and dynamic tests. The numerical and experimental studies show that the strain data as well as acceleration data can be utilized in detecting damage.

  • PDF

Development of Seismic Damage Evaluation factor of Reinforced Concrete Pier for Fragility Analysis (취약도 해석을 위한 철근콘크리트 교각의 지진손상 평가인자 결정)

  • 고현무;이지호;강중원;조호현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.308-315
    • /
    • 2002
  • Fragility analysis is widely used for the seismic safety evaluation of a structure. In fragility analysis, damage evaluation is a crucial factor. Most of the present fragility analyses use the representative responses such as displacement and absorbed hysteretic energy as a tool of damage evaluation. But damage evaluation method that can represent the local damage of a structure is required in the case of piers of which the local damage can cause the whole failure of bridge system. Therefore this study proposes a damage index, which can represent the distribution and magnitude of local damage by using the Lee and Fenves'plastic-damage model. Using the proposed damage index, fragility curves and damage probability matrix of pier are produced and fragility analysis is performed.

  • PDF

Iterative damage index method for structural health monitoring

  • You, Taesun;Gardoni, Paolo;Hurlebaus, Stefan
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • Structural Health Monitoring (SHM) is an effective alternative to conventional inspections which are time-consuming and subjective. SHM can detect damage early and reduce maintenance cost and thereby help reduce the likelihood of catastrophic structural events to infrastructure such as bridges. After reviewing the Damage Index Method (DIM), an Iterative Damage Index Method (IDIM) is proposed to improve the accuracy of damage detection. These two damage detection techniques are compared based on damage on two structures, a simply supported beam and a pedestrian bridge. Compared to the traditional damage detection algorithm, the proposed IDIM is shown to be less arbitrary and more accurate.

Damage Detection in Highway Bridges Via Changes in Modal Parameters (진동특성치의 변화를 통한 교량의 손상발견)

  • Kim, Jeong-Tae;Ryu, Yeon-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.87-94
    • /
    • 1995
  • In highway bridges robust damage detection exercises are mandatory to secure the safety of the structures from hostile environmental conditions such as fatigue earthquake, wind, and corrosion. This paper presents a damage detection practice in a full-scale highway bridge by utilizing modal response parameters of as-built and damaged states of the structure. first the test structure is described and modal testing procedures are outlined. Next, a damage detection model which yields information on the location of damage directly from changes in mode shapes is outlined. Finally, the damage detection model is implemented to predict the location of damage in the ten structure. From the results, it was found that the damage detection model accurately locates damage in the test structures for which modal parameters of only a single mode are available for pre-damage (as-built) and post-damage stages.

  • PDF

Damage identification of isolators in base-isolated torsionally coupled buildings

  • Wang, Jer-Fu;Huang, Ming-Chih;Lin, Chi-Chang;Lin, Tzu-Kang
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.387-410
    • /
    • 2013
  • This paper deals with the damage assessment for isolators of base-isolated building systems considering the torsion-coupling (TC) effect by establishing damage indices. The damage indices can indicate the reduction in lateral stiffness of the isolator story as explicit formulas in terms of modal parameters. In addition, the damage location, expressed in terms of the estimated damage index and eccentricities before and after damage, is also presented. Numerical analysis shows that the proposed algorithms are applicable for general base-isolated multi-story TC buildings. A procedure from the analysis of seismic response to the implementation of damage indices is demonstrated by using a numerical case. A system identification technique is employed to extract modal parameters from seismic responses of a building. Results show that the proposed indices are capable of detecting the occurrence of damage and preliminarily estimating the location of damaged isolator.

Earthquake Damage Assessment of Buildings Using Opendata in the Pohang and the Gyeongju Earthquakes (Opendata 기반 포항 및 경주지진에 의한 건물손상 평가)

  • Eem, Seung-Hyun;Yang, Beomjoo;Jeon, Haemin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.121-128
    • /
    • 2018
  • Severe earthquakes can cause damage to society both socially and economically. An appropriate initial response can alleviate damage from severe earthquakes. In order to formulate an appropriate initial response, it is necessary to identify damage situations in societies; however, it is difficult to grasp this information immediately after an earthquake event. In this study, an earthquake damage assessment methodology for buildings is proposed for estimating damage situations immediately after severe earthquakes. A response spectrum database is constructed to provide response spectra at arbitrary locations from earthquake measurements immediately after the event. The fragility curves are used to estimate the damage of the buildings. Earthquake damage assessment is performed from the response spectrum database at the building scale to provide enhanced damage condition information. Earthquake damage assessment for Gyeongju city and Pohang city were conducted using the proposed methodology, when an earthquake occurred on September 12, 2016, and November 15, 2017. Results confirm that the proposed earthquake damage assessment effectively represented the earthquake damage situation in the city to decide on an appropriate initial response by providing detailed information at the building scale.

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.