• Title/Summary/Keyword: Damage Tolerance

Search Result 314, Processing Time 0.03 seconds

Chronological Switch from Translesion Synthesis to Homology-Dependent Gap Repair In Vivo

  • Fujii, Shingo;Isogawa, Asako;Fuchs, Robert P.
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.297-302
    • /
    • 2018
  • Cells are constantly exposed to endogenous and exogenous chemical and physical agents that damage their genome by forming DNA lesions. These lesions interfere with the normal functions of DNA such as transcription and replication, and need to be either repaired or tolerated. DNA lesions are accurately removed via various repair pathways. In contrast, tolerance mechanisms do not remove lesions but only allow replication to proceed despite the presence of unrepaired lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS), which is an error-prone strategy and an accurate strategy based on homologous recombination (homology-dependent gap repair [HDGR]). Thus, the mutation frequency reflects the relative extent to which the two tolerance pathways operate in vivo. In the present paper, we review the present understanding of the mechanisms of TLS and HDGR and propose a novel and comprehensive view of the way both strategies interact and are regulated in vivo.

Damage Tolerance Analysis Using Surrogate Model (근사모델을 사용한 손상허용해석)

  • Jang, Byung-Wook;Im, Jae-Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.306-313
    • /
    • 2011
  • The damage tolerance analysis is required to guarantee the structural safety and the reliability for aircraft components. The damage tolerance method, which evaluate the life considering the initial crack, considers a fatigue design model of the aircraft main structure. The fatigue crack growth life should be calculated in damage tolerance analysis and the inspection time to define the replacement cycle. In this paper, the damage tolerance analysis is performed for a turbine wheel which has complex geometry. The equation of the stress intensity factor for complex geometry is hard to know, so that they are usually processed by finite element analysis which takes long time. To solve this problem, the stress intensity factors at specified crack are obtained by the FEA and the crack growth life is evaluated using the surrogate model which is generated by the regression analysis of the FEA data. From the results, the efficiency of the crack growth life calculation and the damage tolerance analysis could be increased by taking the surrogate model.

Investigation on Damage Tolerance of Thick Laminate for Aircraft Composite Structure (항공기 복합재 구조에 적용된 두꺼운 적층판의 손상 허용 기준 평가)

  • Park, Hyun-Bum;Kong, Chang-Duk;Shin, Chul-Jin
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.105-109
    • /
    • 2012
  • Recently, development of a small aircraft has been carried out for the BASA(Bilateral Aviation Safety Agreement) program in Korea. This aircraft adopted all composite structures for environmental friendly by low fuel consumption due to its lightness behavior. However the composite structure has disadvantage which is very weak against impact damages. Therefore, damage allowable design of aircraft structure must be performed considering compressive fracture strength. This point is very important for certification of composite structure aircraft. In this paper, it is performed the research on damage tolerance of thick laminate adopting aircraft structure. The damage tolerance of three different types of thick laminates such as no damage, open hole and impact damage is evaluated under compression loading.

Hertzian Crack Suppression and Damage Tolerance of Silicon Nitride Bilayer

  • Lee, Kee-Sung;Kim, Do-Kyung;Lee, Seung-Kun;Lawn, Brian R.
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.356-362
    • /
    • 1998
  • Hertzian crack suppression phenomena and relatively high damage tolerance were investigated in hard/soft silicon nitride ($Si_3N_4$) bilayers. Coarse $\alpha}-Si_3N_4$ powder was wsed for the hard coating layer and fine $\alpha}-Si_3N_4$ powder was used for the soft substrate layer. The two layers were designed with a strong interface. Hertzian indentation was used to investigate contact fracture and damage tolerance property. Hertzian crack suppression has occurred with increasing applied load and decreasing coating thickness. The crack suppression contributed strength improvement, especially in the bilayers with thinner coatings. Ultimately, the combination of hard coating with soft but tough underlayer improved the damage tolerance of brittle $Si_3N_4$ ceramics.

  • PDF

Fatigue and Damage Tolerance Evaluation of Composite Helicopter Rotor Blades (복합재 헬리콥터 로터 블레이드의 피로 및 손상허용 평가 방안)

  • Kee, Young-Jung;Paek, Seung Kil
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.41-46
    • /
    • 2014
  • Fatigue evaluations for the rotor blades of commercial or military rotorcraft have been carried out using the safe life concept since 1950s. Particularly, in the case of a rotor blade made of a composite material, a highly reliable fatigue life could be predicted by evaluation the cumulative damage using combination of fatigue life curve and load spectrum. However, there is a limit in adequately evaluating the strength reducing phenomena caused by damages or defects generated during the manufacturing process or impact damage induced by operational usages, using only the safe life concept. In this study, the fatigue evaluation process based on the damage tolerance concept is described and illustrated by means of successful application to substantiate the retirement time of composite rotor blades.

A Study on Flaw Tolerance Evaluation of a Main Rotor Actuator for Rotorcraft (회전익 항공기용 주 로터 작동기에 대한 손상허용 평가 연구)

  • Park, Juwon;Jeong, Jeongrae
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.1-6
    • /
    • 2020
  • The flaw tolerance evaluation requirement prescribed in Federal Aviation Regulation (FAR) §29.571 Amendment 55 was established in 2012. As a result, there are not many datas of flaw tolerance evaluation. This paper introduces the series of processes and evaluation methods carried out for certification based on the flaw tolerance evaluation. An initial flaws were artificially formed on the main rotor actuator and then the damage tolerance test was performed, which was twice life time of design requirements, to demonstrate that the main rotor actuator of the rotorcraft is sufficiently capable of flaw tolerance.

A Design Guide for Composite Laminates by the Compressive after Impact Tests (충격후 잔류압축강도시험에 의한 복합재료 적층판의 설계)

  • 정태은;박경하;류정주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2105-2113
    • /
    • 1995
  • The compressive tests under impact conditions were performed to establish a design guide for impact damage tolerance. The composition of layup was selected for the real cases of composite aircraft structure. The energy level of visible of visible damage threshold was determined as 7 Joules. It was found that the normalized bending stiffnesses in the direction of closely fixed boundary affected the area of damage. Graphite/epoxy used in the tests exhibited 60% reduction in compression strength at the energy level of visible damage threshold. Wet-conditioned specimens represented 9% reduction in residual compressive strength in comparison with room temperature ambient specimens. In this study, a design factor of 2.1 was proposed for the low velocity impact damage.

Probabilistic Model of Service Life to Evaluate Damage Tolerance of Composite Structure (복합재 항공구조물의 손상허용평가를 위한 운항수명의 확률적 모델)

  • A.스튜어트;A.우샤코프;심재열;황인희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.245-248
    • /
    • 2000
  • Modern aircraft composite structures are designed using a damage tolerance philosophy. This design philosophy envisions sufficient strength and structural integrity of the aircraft to sustain major damage and to avoid catastrophic failure. The only reasonable way to treat on the same basis all the conditions and uncertainties participating in the design of damage tolerant composite aircraft structures is to use the probability-based approach. Therefore, the model has been developed to assess the probability of structural failure (POSF) and associated risk taking into account the random mechanical loads, random temperature-humidity conditions, conditions causing damages, as well as structural strength variations due to intrinsic strength scatter, manufacturing defects, operational damages, temperature-humidity conditions. The model enables engineers to establish the relationship between static/residual strength safety margins, production quality control requirements, in-service inspection resolution and criteria, and POSF. This make possible to estimate the cost associated with the mentioned factors and to use this cost as overall criterion. The methodology has been programmed into software.

  • PDF

Calibration of crack growth model for damage tolerance analysis (손상허용해석을 위한 균열성장모델 교정)

  • 주영식;김재훈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.67-77
    • /
    • 2002
  • This paper introduces the calibration results of the fatigue crack growth models for damage tolerance analysis of the aircraft structures. Generalized Willenborg model and Wheeler model are calibrated with experimental data tested under the load spectrum of a trainer. The retardation factors such as, shut-off ratio in Generalized Willenborg model and shaping exponent in Wheeler model, are evaluated for aluminum alloys AL2024-T3511, AL7050-T7451 and AL7075-T73511. It is shown that the retardation effect of the crack growth rate depends on the yield strength of material and the maximum stress in the load spectrum. Generalized Willenborg model and Wheeler model give satisfactory prediction of crack growth life but the calibration of the experimental parameters with test is required.

Damage Tolerance in Hardly Coated Layer Structure with Modest Elastic Modulus Mismatch

  • Lee, Kee-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1638-1649
    • /
    • 2003
  • A study is made on the characterization of damage tolerance by spherical indentation in hardly coated layer structure with modest elastic modulus mismatch. A hard silicon nitride is prepared for the coating material and silicon nitride with 5wt% of boron nitride composites for underlayer. Hot pressing to eliminate the effect of interface delamination during the fracture makes strong interfacial bonding. The elastic modulus mismatch between the layers is not only large enough to suppress the surface crack initiation from the coating layer but sufficiently small to prevent the initiation of radial crack from the interface. The strength degradation of the layer structure after sphere contact indentation does not significantly occur, while the degradation of silicon nitride-boron nitride composite is critical at a high load and high number of contacts.