• 제목/요약/키워드: Damping-Performance

검색결과 1,233건 처리시간 0.024초

Effects of viscous damping models on a single-layer latticed dome during earthquakes

  • Zhang, Huidong;Wang, Jinpeng;Zhang, Xiaoshuai;Liu, Guoping
    • Structural Engineering and Mechanics
    • /
    • 제62권4호
    • /
    • pp.455-464
    • /
    • 2017
  • Rayleigh damping model is recommended in the recently developed Performance-Based Earthquake Engineering (PBEE) methodology, but this methodology does not provide sufficient information due to the complexity of the damping mechanism. Furthermore, each Rayleigh-type damping model may have its individual limitations. In this study, Rayleigh-type damping models that are used widely in engineering practice are discussed. The seismic performance of a large-span single-layer latticed dome subjected to earthquake ground motions is investigated using different Rayleigh damping models. Herein a simulation technique is developed considering low cycle fatigue (LCF) in steel material. In the simulation technique, Ramberg-Osgood steel material model with the low cycle fatigue effect is used to simulate the non-uniformly distributed material damping and low cycle fatigue damage in the structure. Subsequently, the damping forces of the structure generated by different damping models are compared and discussed; the effects of the damping ratio and roof load on the damping forces are evaluated. Finally, the low cycle fatigue damage values in sections of members are given using these damping models. Through a comparative analysis, an appropriate Rayleigh-type damping model used for a large span single-layer latticed dome subjected to earthquake ground motions is determined in terms of the existing damping models.

Mechanical Amplification of Relative Movements in Damped Outriggers for Wind and Seismic Response Mitigation

  • Mathias, Neville;Ranaudo, Francesco;Sarkisian, Mark
    • 국제초고층학회논문집
    • /
    • 제5권1호
    • /
    • pp.51-62
    • /
    • 2016
  • The concept of introducing viscous damping devices between outriggers and perimeter columns in tall buildings to provide supplementary damping and improve performance, reduce structural costs, and increase available usable area was developed and implemented by Smith and Willford (2007). It was recognized that the relative vertical movement that would occur between the ends of outriggers and columns, if they were not connected, could be used to generate damping. The movements, and correspondingly damping, can potentially be significantly increased by amplifying them using simple "mechanisms". The mechanisms also make it possible to increase the number of available dampers and thus further increase supplementary damping. The feasibility of mechanisms to amplify supplementary damping and enhance structural performance of tall, slender buildings is studied with particular focus on its efficacy in improving structural performance in wind loads.

풍하중에 의한 타원형 구조물의 진동 제어 (Vibration Control of Tower Structure under Wind Load)

  • 황재승;김윤석;주석준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.427-430
    • /
    • 2002
  • The present parer outlines the system identification and vibration control performance of air traffic control tower of Yangyang international airport with tuned mass damper(TMD). From the free vibration test, natural frequency, damping ratio and mode shape of tower are obtained and these values are compared with the values from numerical analysis. In the vibration control test to evaluate the vibration control performance, equivalent damping ratio increased by tuned mass damper are obtained in case the TMD is operated as passive mode. Damping ratio of tower evaluated from free vibration test is about $1.0{\%}$. It is very low value than damping ratio recommended in general code. Damping ratio of passive mode is about $5{\%}$. These equivalent damping ratio increased by TMD is enough to enhance the serviceability of tower structure under wind load.

  • PDF

바아지형 FPSO의 횡운동 성능에 대한 해석 (An Analysis of Rolling Performance for a Barge-Type FPSO)

  • 최윤락;김진하;김용수
    • 한국해양공학회지
    • /
    • 제19권3호
    • /
    • pp.25-30
    • /
    • 2005
  • To predict rolling performance for a barge-type FPSO, the evaluation of correct nonlinear roll damping is critical. The square section of FPSO causes a considerable viscous damping effect. Free roll decay tests were carried out to estimate nonlinear roll damping for a barge-type FPSO, under three different conditions. The roll motion RAO was deduced from model tests in the wave condition of the wideband spectrum. In numerical calculation, the quadratic damping was considered as equivalent linear damping, using the results of free roll decay test. Tested roll performance in the JONSWAP wave spectrum was compared with numerical results. These two results shaw good agreement, in spite of the proximity of peak wave period and roll natural period.

A study on performance assessment of WEC rotor in the Jeju western waters

  • Poguluri, Sunny Kumar;Bae, Yoon Hyeok
    • Ocean Systems Engineering
    • /
    • 제8권4호
    • /
    • pp.361-380
    • /
    • 2018
  • The dynamic performance of the wave energy converter (WEC) rotor with different geometric parameters such as depth of submergence and beak angle has been assessed by considering the linear potential flow theory using WAMIT solver and along with the computational fluid dynamics (CFD). The effect of viscous damping is incorporated by conducting numerical free decay test using CFD. The hydrodynamic coefficients obtained from the WAMIT, viscous damping from the CFD and estimated PTO damping are used to solve the equation of motion to obtain the final pitch response, mean optimal power and capture width. The viscous damping is almost 0.9 to 4.6 times when compared to the actual damping. It is observed that by neglecting the viscous damping the pitch response and power are overestimated when compared to the without viscous damping. The performance of the pitch WEC rotor in the Jeju western coast at the Chagwido is analyzed using Joint North Sea Wave Project (JONSWAP) spectrum and square-root of average extracted power is obtained. The performance of WEC rotor with depth of submergence 2.8 m and beak angle $60^{\circ}$ found to be good compared to the other rotors.

Effect of Mechanical Damping and Electrical Conductivity on the Dynamic Performance of a Novel Electromagnetic Engine Valve Actuator

  • Park, Sang-Shin;Kim, Jin-Ho;Choi, Young;Chang, Jung-Hwan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.72-74
    • /
    • 2008
  • We investigate the effect of mechanical damping and electrical conductivity on the dynamic performance of a new electromagnetic engine valve actuator that employs a permanent magnet. The key dynamic performance factors are the transition time and the landing velocity of the armature. Two-dimensional dynamic finite element analyses are performed to simulate a coupled system. The results show that mechanical damping and electrical conductivity have similar effects on the dynamic performance of the engine valve actuator. Subsequently, it is possible to replace the role of mechanical damping by controlling the electrical conductivity through the thickness and number of steel core laminations.

Sensorless Active Damping Method for an LCL Filter in Grid-Connected Parallel Inverters for Battery Energy Storage Systems

  • Sung, Won-Yong;Ahn, Hyo Min;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.280-286
    • /
    • 2018
  • A sensorless active damping scheme for LCL filters in grid-connected parallel inverters for battery energy storage systems is proposed. This damping method is superior to the conventional notch filter and virtual damping methods with respect to robustness against the variation of the resonance of the filter and unnecessary additional current sensors. The theoretical analysis of the proposed damping method is explained in detail, along with the characteristic comparison to the conventional active damping methods. The performance verification of the proposed sensorless active damping method shows that its performance is comparable to that of the conventional virtual damping method, even without additional current sensors. Finally, simulation and experimental results are provided to examine the overall characteristics of the proposed method.

자동차 충격흡수장치용 감쇠력 조정 전자제어장치 연구 (A Study of Electrical Control Kit for Damping Force of Automotive Shock Absorber)

  • 손일선;이정구
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.1-6
    • /
    • 2008
  • The performance of shock absorber is directly related to the car behavior and performance, both for handling and comfort. Most of compact car are assembled the passive shock absorber for cost effect but some of compact driver want better performance of shock absorber than standard parts. Therefore, they want the semi-active suspension control system instead of standard damper system. But they only can change the mechanical damping control shock absorber at A/S market. The mechanical damping control shack absorber can not vary the damping force in driving condition so they do not satisfy the mechanical damping control shock absorber system. In this study, electrically damping force controlled shock absorber system is developed based on the mechanical damping force control damper system. This system can vary damping force by switch on dashboard in driving condition. And, this system can satisfy the requirement of tuning market. Therefore, it is expected the system to show the engineering capability of korean damper company and to increase export market share to oversea damper market.

에어 댐핑 마운트 개발 (Development of Air-Damping Mount)

  • 김정훈;이동욱;김재산
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.328-329
    • /
    • 2009
  • Air-Damping Mount is proposed to compromise between performance and weight & cost. The design of Air-Damping Mount was based on the specification from the engine mounting system analysis of a small car. To verify it's feasibility, R&H test was done on the small car and it is proven that Air-Damping Mount shows the performance between hydraulic mount and rubber mount.

  • PDF

다중 슬림형 감쇠장치의 개발 및 성능 실험 (Development of Multiple Slim Type Damper System and Performance Test)

  • 성은희;김다위;박두환;박관순;박장호;조해진
    • 한국안전학회지
    • /
    • 제29권2호
    • /
    • pp.31-37
    • /
    • 2014
  • For the vibration control of residential buildings, a multiple type slim damper system is developed and dynamic performance test is performed in this study. In conventional damping systems, larger installation space is required in order to achieve acceptable seismic performance, and as a result, it is difficult to determine efficient damping capacity of the device. The proposed damping device is composed of several small slim type dampers and linkage units. It can control damping capacity easily by changing the number of the small damper. To evaluate the proposed damping device, three slim type dampers (single-type, triple-type and penta-type) are designed and manufactured in real scale. Dynamic loading tests are performed by using the three manufactured dampers. From the tests, it is shown that damping coefficient is proportional to the number of the damper combined. Thus, test results validates the practicality of the proposed slim type dampers. applying nonlinear curve fitting technique, numerical model of the dampers are developed and presented.