• Title/Summary/Keyword: Daphnia magna

Search Result 154, Processing Time 0.035 seconds

Prediction of Daphnia magna LC50 on Heavy Metal Containing Samples

  • Ahn, Bok-Kyoun;;Ahn, Sang-Jin;Kim, Geon-Heung
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.61-68
    • /
    • 1991
  • This study assessed the contribution of heavy metals to total toxicity as well as the presence other toxic compounds before and after adding the chemical P to concurrently conducted bioassay tests of Daphnia magna and P. Phosphoreum. The following conclusions were drawn from this study : With excessive EDTA dosage, a toxicity reduction in Microtox would occur due to a metal-comples being formed. Microtox was far less sensitive than D. magna to heavy metal toxicity, but extended exposure time and reagent could increase the sensitivity.

  • PDF

Evaluation on Environmental Bio-toxicity of Industrial Wastewater (산업폐수의 생물독성 발현에 관한 연구)

  • Kim, S.H.;Cheon, S.U.;Shin, K.S.;Jung, D.I.
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.274-276
    • /
    • 2005
  • To investigate bioassay for toxic level evaluation of wastewater, toxic levels were checked influents and effluents of 6 wastewater discharge facilities with Daphnia magna and Vibrio fischeri. In view of test duration, D. magna is preferred at 48 hours. And it was judged to efficient that one of the two was choosen for toxicity test method (Daphnia test and Vibrio test). Analysis data for wastewater is average toxic level for influent more higher than effluent. And effluent toxic level is sharp decrease than effluents.

Effect of Ultraviolet-B Radiation Acclimation to Fresh Water Daphnia magna Simultaneously Exposed to Several Heavy Metals and UV-B Radiation (담수 물벼룩 Daphnia magna의 자외선 B 적응이 자외선과 중금속의 동시노출에 따른 독성반응에 미치는 영향)

  • Kim, Jung-Kon;Lee, Min-Jung;Oh, So-Rin;Choi, Kyung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.2 s.95
    • /
    • pp.123-131
    • /
    • 2007
  • Many environmental contaminants including several metals, polycyclic aromatic hydrocarbons, and pharmaceuticals, have been identified to be phototoxic in the water environment. Concerns regarding photo-enhancement of toxicity of several environmental contaminants have been increasing because of the increased level of ultraviolet irradiation on the earth surface. However, there exist arguments that there might be certain defense mechanisms taking place in the aquatic ecosystem, which may include behavioral characteristics or genetic acclimation. This study was conducted to understand the potential responses of aquatic receptors to several phototoxic metals in the real environment, where long-term acclimation of such organisms to low dose UV-B may take place. For this purpose, water flea Daphnia magna was acclimated to environmentally relevant dose of UV-B (12 to $18uW/cm^2$) for >11 generations. The differences in developmental and life history characteristics, and toxicity responses were evaluated. Acclimation did not affect the daphnids' growth, longevity, and reproduction characteristics such as time to first brood, and brood size: After 21 d, survival of D. magna was not influenced by UV-B acclimation. When the number of young per female was compared. the daphnids acclimated for 11 generations tend to produce less number of neonates than the un-acclimated individuals but with no statistical significance (p>0.05). Four metals that were reported to be phototoxic elsewhere were employed in this evaluation, that include As, Cd. Cu, and Ni. UV-B level being applied in acclimation did increase the toxicity of Cd and Cu, significantly (p<0.05). However, the toxicities of As and Ni were not affected by irradiation of UV-B. Phototoxic responses were evaluated between the acclimated and the un-acclimated daphnids. For Cu, UV-B acclimation led to reduction of the photo-induced toxicity $(p\approx0.1)$ in daphnids. Non-acclimated Daphnia were affected by 50% at 4.18 ug/l Cu. but UV-B acclimated individuals exhibited $EC_{50}$ of 5.89 ug/l. With Cd, UV-B acclimation appeared to increase phototoxicity (p>0.05). With As and Ni, UV-B acclimation did not influence photo-induced toxicity. This observation may be in part explained by the type of reactive oxygen species that were generated by each metal. Similar to UV-B light, Cu is known to generate superoxide anion by acting as redox cycling toxicant. This is one of the first studies that employed_laboratory based UV-B acclimated test species for photoenhanced toxicity evaluation.

Toxicity Evaluation of Burkholderia pyrrocinia CAB08106-4 in Cyprinus carpio and Daphnia magna (Burkholderia pyrrocinia CAB08106-4 원제가 잉어 및 물벼룩에 미치는 영향 연구)

  • Cho, Jae-Gu;Kim, Mee-Seon;Choi, Hyun-Jung;Kwon, Min;Kang, Tae-Gu;Chung, Chang-Kook;Kim, Kyun;Oh, Seung-Min;Park, Cheol-Beom
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.1
    • /
    • pp.21-25
    • /
    • 2014
  • Bukholderia pyrrocinia CAB08106-4 has an anti-fungal effect on Garlic White Rot caused by Sclereotium cepivorum and Sclereotium sp. It is environmentally friendly microbial product that prevents and controls a variety of phytopathogens including Garlic White Rot caused by Sclereotium cepivorum and Sclereotium sp. The aim of this study was to assess the environmental toxicity using Cyprinus carpio and Daphnia magna. Bukholderia pyrrocinia CAB08106-4 ($1.0{\times}10^9cfu/mL$) was adminatrated to Cyprinus carpio and Daphnia magna according to the toxicity test guideline for peciticide. $LC_{50}$ of Bukholderia pyrrocinia CAB08106-4 is over $6.67{\times}10^4cfu/mL$ in Cyprinus carpio and Daphnia magna and no adverse effect was observed. Based on these results, we concluded that Bukholderia pyrrocinia CAB08106-4 has no toxiciy for Cyprinus carpio and Daphnia magna.

Ecological Risk Assessment(ERA) of Abandoned Mine Drainage(AMD) in Korea Based on Vibrio fisheri, Selenastrum capricornutum, and Daphnia magna (국내 폐광산 지역의 Vibrio fisheri, Selenastrum capricornutum, 그리고 Daphnia magna를 이용한 생태 위해성 평가)

  • Kim, Ki-Tae;Lee, Byoung-Cheun;Kim, Dong-Wook;Kim, Sang-Don
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.163-168
    • /
    • 2007
  • Ecological risk assessment(ERA) to 5 abandoned mine drainage was investigated by using chemical measurement and bioassay experiment. From the results of chemical analysis, the high concentration of heavy metals are detected in most area. The Arsenite were mostly detected in Songcheon, Nakdong, and Dukum abandoned mine area, and various heavy metals were highly dispersed in Nakdong area. The study area have also high biological toxicity, resulted from the bioassay based on WET(Whole Effluent Toxicity) test by using Vibrio fisheri, Selenastrum copricornutum, and Daphnia magna. The maximum toxicity was shown in the point where the mine waters start to flow. The sensitivity of toxicity by S. capricornutum was relatively high considering the values of toxicity in all samples, from 1.3 to 32.0 TU. The different sensitivities of toxicity recommends the use of battery system, resulted from at least two test species for bioassay or ecological risk assessment of mine drainage. Besides, the results showed high hazard quotient(i.e., greater than 1 HQ value indicating potentially significant toxic risks) with regard to abandoned mine drainage area in this study. On the other hand, the biological toxicity results were sharply decreased by attenuation along further distance from discharging of mine waters. Therefore, environmental parameters including the dilution factor, dissolved organic matter, and hardness should be considered when the remediation and ERA of abandoned mine drainage is planned.

Optimal temperature conditions of Korean freshwater Cladoceran for development of standard toxicity test methods (표준생태독성시험법 개발을 위한 한국산 물벼룩의 최적사육온도 구명)

  • Kim, Byung-Seok;Park, Yoen-Ki;Park, Kyung-Hun;Shin, Jin-Sup;Kim, Jin-Hwa;Ahn, Young-Joon
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.3
    • /
    • pp.221-230
    • /
    • 2005
  • Temperature is an important ambient factor affecting the physiology and metabolism of aquatic invertebrates. In this study, we studied about the survival, reproduction and growth effects of 4 different temperatures(16, 20, 24, $28^{\circ}C$) in four Korean cladoceran, Daphnia sp., Daphnia obtusa, Moina macrocopa, Simocephalus vetulus and Daphnia magna as an international standard species. All 5 water flea tested showed that molting time, fecundity and intrinsic rate of natural increase(r) in high temperature condition were higher than those in lower temperature. On the other hand, lower survivals and longer time to start of offspring were showed in high temperature. Our results suggest that the optimal temperatures of Daphnia sp.,, Moina macrocopa and Simocephalus vetulus seem to be about $20^{\circ}C$ except for Daphnia obtusa which as showed good survivals and reproductions in $16^{\circ}C$.

Changes of Growth, Morphology and Microcystin Production in Microcystis aeruginosa in Response to Zooplankton Culture Media Filtrate (동물플랑크톤 배양여과액에 의한 Microcystis aeruginosa의 성장,형태 및 microcystin 생성량의 변화)

  • Ha, Kyong;Jang, Min-Ho;Jung, Jong-Mun;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.1-8
    • /
    • 2003
  • Growth, colony formation and microcystin production of 'low-toxic' Microcysits aeruginosa $K{\"{u}}tzing$ were examined in relation to the 'info-chemicals' released by zooplankton. Algae were cultured in a medium with or without filtered water taken from cultures of Daphnia magna Straus (300 ind./L) or Moina macrocopa Straus (500 ind./L), The growth of M. aeruginosa, based on cell number, was also significantly different from populations cultured in the media with and without filtered zooplankton water from the exponential growth phase. In the 6-day experiment, the growth pattern of M. aeruginosa cultured with ZCMF was clearly different to control with-out ZCMF. Mean number of cells/particle and particle bio-volume of M. aeruginosa increased significantly from the day 2 for the Daphnia-CMF or Moina-CMF treat-ments. Microcystin production was promoted showing from 18.7 to 55 ${\mu}g/g$-dry cell in the zooplankton treatments relative to the controls. At peaked level on day 4, the highest level of up to $70.5{\pm}16.8\;{\mu}g/g$-dry cell was observed in the D. magna treatment. This study suggested that 'info-chemicals' from zooplankton might induce the increase of algal growth rates, colony formation and microcystin production, these seem to be advantageous to the alga and thus as a grazing defense mechanism.

Qualitative Analysis for Metabolites of Pharmaceuticals Formed in Daphnia magna and Gammarus pulex Using Liquid Chromatogram-High Resolution Mass Spectrometry (LC-HRMS) (LC-HRMS를 이용한 Daphnia magna 및 Gammarus pulex 생체내 의약품 대사체 정성분석)

  • Jeon, Junho
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.243-251
    • /
    • 2018
  • Pharmaceuticals in wastewater effluents have been recognized as emerging pollutants threatening freshwater organisms. To extend understanding for bioaccumulation and toxicity in those organisms, information on biotransformation products (or metabolites) and their metabolic pathway are crucial. The aim of the present study is to identify and elucidate metabolites of pharmaceuticals formed in exposed organisms using suspect and nontarget screening approach using LC-HRMS. As the target pharmaceuticals, carbamazepine, ketoprofen, metoprolol, propranolol, and verapamil were selected whereas Daphnia magna and Gammarus pulex were used as test organisms. After 24h exposure, metabolites formed in the organisms were identified using LC-HRMS. The structures of metabolites were elucidated via analysis of MS/MS fragment pattern and the comparison with fragment database. As the results, a total of 10 metabolites were identified for 5 parent compounds (C253/C356 for carbamazepine, K211 for ketoprofen, M256 for metoprolol, P218/P276/P306 for propranolol, V196/V291/V441 for verapamil). Among them, the presence of C253 and V291 was confirmed using standard materials. Most of the identified metabolites were formed through oxidative reactions such as hydroxylation, N-demethylation, and dealkylation. Cysteine conjugation (phase II reaction) metabolite (C356) for carbamazepine was found in daphnia. The metabolic pathway of verapamil showed similar metabolic pathways and metabolic pathways for both species. Although the toxicological information on the identified metabolites could not be confirmed, the molecular structure information of the proposed metabolites can be used for future evaluation and prediction of toxicity.

Evaluation of Toxicity for Commercial Red Mud Pellets Using Pseudokirchneriella subcapitata and Daphnia magna

  • Lee, Saeromi;Ahn, Chang Hyuk;Park, Jae Roh;Lee, Sooji;Lee, Inju;Joo, Jin Chul
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.345-350
    • /
    • 2015
  • The toxicity of red mud (RM) pellets for water purification was evaluated using Pseudokirchneriella subcapitata and Daphnia magna in a lab-scale experiment. According to the algal growth inhibition test, both specific growth rates and relative growth rates of P. subcapitata decreased, and the growth inhibition rates increased ($R^2=0.97$, p<0.001) as the concentration of RM pellets in the aqueous solution increased (>1.6 g/L). Also, based on the acute toxicity evaluation test on D. magna, toxic unit (TU) values ranged between 0.00 and 2.83, and increased with an increase in the concentration of RM pellets in the aqueous solution. A correlation analysis indicated that the pH of RM pellets was statistically correlated with TU values ($R^2=0.77$, p=0.02). The environmental implication from this study is that the concentration of RM pellets in an aqueous solution needs to be lower than 4.4 g/L to keep the maximum permissible TU value less than 1.0.