• Title/Summary/Keyword: Darcy%27s law

Search Result 6, Processing Time 0.023 seconds

Numerical simulations and related problems in multiphase flow and multicomponent transport (다중상 흐름과 다종성분의 거동에 관한 수치적 모의와 문제점)

  • 이강근;이진용;천정용;유동렬;하규철;이철효
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.27-31
    • /
    • 1998
  • Most models for the simulation of multi-phase flow and multi-species transport employ the capillary approach which uses the Darcy's law for the representation of mass flux of each phase. The capillary approach based on the Darcy's law require many empirical coefficients with complex functional dependencies rather than rigrous mathematical and physical formulation. The shortcoming of the capillary approach cause the numerical errors in the simulations by the multi-phase flow and transport models. This study discuss some of the problems related with the use of models.

  • PDF

An Analysis of Thermal Convection in Agricultural-Products Storge System (농산물 저장 시설에서의 열대류 현상의 해석)

  • Kim, Min-Chan;Hyeon, Myeong-Taek;Go, Jeong-Sam
    • Food Science and Preservation
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 1997
  • Natural convection in agricultural-products storage system was analysed theoretically, The storage system was modelled by Internally heated fluid saturated porous layer. Darcy's law was used to explain characteristics of fluid motion. Stability equations were obtained under the linear stability theory and transfer characteristics were modelled by the shape assumption. Based on the modelling of transfer characteristics, heat trasnfer correlations were derived theoretically.

  • PDF

Numerical Study on Flow Distribution in PEMFC with Metal foam Bipolar Plate (다공성 분리판을 적용한 고분자 전해질 연료전지의 유동 분포에 관한 전산해석 연구)

  • SONG, MYEONGHO;KIM, KYOUNGYOUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • It is important to uniformly supply the fuel gas into the reaction activity area in polymer electrolyte membrane fuel cell (PEMFC). Recent studies have shown that the cell performance can be significantly improved by employing metal foam gas distributor as compared with the conventional bipolar plate types. The metal foam gas distributor has been reported to be more efficient to fuel transport. In this study, three-dimensional computational fluid dynamics (CFD) simulations have been performed to examine the effects of metal foam flow field design on the fuel supply to the reaction site. Darcy's law is used for the flow in the porous media. By solving additional advection equation for fluid particle trajectory, the gas transport has been visualized and examined for various geometrical configuration of metal foam gas distributor.

Self-Healing Performance of Concrete Using Admixture (구체방수 콘크리트의 균열 자가치유 성능)

  • Lee, Jong-Yun;Lee, Han-Joo;Lee, Yong-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.109-114
    • /
    • 2012
  • This study is the things to experiment and evaluate the performance of self-healing water-proofing on the concrete to be using the crystal growth composite waterproofing admixture. The cylinder to be making on the concrete by ${\varnothing}150{\times}300$ mm for evaluating the performance of self-healing water-proofing was aging 90 days and cut on a 50 mm. So, it prompted the crack and applied. After it measured the quantity of water to be flow the water throughout the crack part of the cylinder, it applied the basic formular of Darcy's law and calculated the coefficient of water permeability. So, it verified the performance of self-healing water-proofing on the basis of the changing shape of the water permeability. This experiment is the thing to be applied the general evaluation of the structure to demand the real watertightness on doing for the evaluating of performance of the quantity of water leak and self-healing water-proofing about the various penetration crack.

An Analytical Solution of Dynamic Responses for Seabed under Coexisting Fields of Flow and Partial Standing Wave with Arbitrary Reflection Ratio (흐름과 임의반사율을 갖는 부분중복파와의 공존장하에서 해저지반내 동적응답의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kang, Gi-Chun;Kim, Do-Sam;Kim, Tae-Hyung;Na, Seung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.27-44
    • /
    • 2015
  • An analytical solution of dynamic responses for seabed in finite and infinite thicknesses including shallow has been developed under flow and partial standing wave with arbitrary reflection ration coexisting field at a constant water depth condition. In the analytical solution, a field was simply transited to a coexisting field of progressive wave and flow when reflection ratio was 0 and to a coexisting field of fully standing wave and flow when reflection ratio was 1. Based on the Biot's consolidation theory, the seabed was assumed as a porous elastic media with the assumptions that pore fluid is compressible and Darcy law governs the flow. The developed analytical solution was compared with the existing results and was verified. Using the analytical solution the deformation, pore pressure, effective and shear stresses were examined under various given values of reflection ratio, flow velocity, incident wave's period and seabed thickness. From this study, it was confirmed that the dynamic response of seabed was quite different depending on consideration of flow, which causes changing period and length of incident and reflection waves. It was also confirmed that dynamic response significantly depends on the magnitude of reflection ratio.

An Analytical Solution of Dynamic Responses for Seabed under Flow and Standing Wave Coexisting Fields (흐름과 완전중복파와의 공존장하에서 해저지반내 동적응답의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung;Kim, Kyu-Han;Jeon, Jong-Hyeok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.118-134
    • /
    • 2015
  • An analytical solution of dynamic responses for seabed in shallow, finite and infinite thicknesses has been developed under flow and standing wave coexisting field at a constant water depth condition. To do this, based on the Biot's consolidation theory, the seabed is assumed as a porous elastic media with the assumptions that pore fluid is compressible and Darcy law governs the flow. The developed analytical solution is compared with the previous results and is verified. Using the analytical solution the deformation, pore pressure, effective and shear stresses of seabed are examined under various given values of flow velocity, incident wave period and seabed thickness. From this study, it is confirmed that the seabed response is quite different depending on consideration of flow, which causes changing period and length of incident and reflection waves.