• Title/Summary/Keyword: Data Imbalance

Search Result 463, Processing Time 0.022 seconds

Learning Behavior Analysis of Bayesian Algorithm Under Class Imbalance Problems (클래스 불균형 문제에서 베이지안 알고리즘의 학습 행위 분석)

  • Hwang, Doo-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.179-186
    • /
    • 2008
  • In this paper we analyse the effects of Bayesian algorithm in teaming class imbalance problems and compare the performance evaluation methods. The teaming performance of the Bayesian algorithm is evaluated over the class imbalance problems generated by priori data distribution, imbalance data rate and discrimination complexity. The experimental results are calculated by the AUC(Area Under the Curve) values of both ROC(Receiver Operator Characteristic) and PR(Precision-Recall) evaluation measures and compared according to imbalance data rate and discrimination complexity. In comparison and analysis, the Bayesian algorithm suffers from the imbalance rate, as the same result in the reported researches, and the data overlapping caused by discrimination complexity is the another factor that hampers the learning performance. As the discrimination complexity and class imbalance rate of the problems increase, the learning performance of the AUC of a PR measure is much more variant than that of the AUC of a ROC measure. But the performances of both measures are similar with the low discrimination complexity and class imbalance rate of the problems. The experimental results show 4hat the AUC of a PR measure is more proper in evaluating the learning of class imbalance problem and furthermore gets the benefit in designing the optimal learning model considering a misclassification cost.

A Study on Visual Emotion Classification using Balanced Data Augmentation (균형 잡힌 데이터 증강 기반 영상 감정 분류에 관한 연구)

  • Jeong, Chi Yoon;Kim, Mooseop
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.880-889
    • /
    • 2021
  • In everyday life, recognizing people's emotions from their frames is essential and is a popular research domain in the area of computer vision. Visual emotion has a severe class imbalance in which most of the data are distributed in specific categories. The existing methods do not consider class imbalance and used accuracy as the performance metric, which is not suitable for evaluating the performance of the imbalanced dataset. Therefore, we proposed a method for recognizing visual emotion using balanced data augmentation to address the class imbalance. The proposed method generates a balanced dataset by adopting the random over-sampling and image transformation methods. Also, the proposed method uses the Focal loss as a loss function, which can mitigate the class imbalance by down weighting the well-classified samples. EfficientNet, which is the state-of-the-art method for image classification is used to recognize visual emotion. We compare the performance of the proposed method with that of conventional methods by using a public dataset. The experimental results show that the proposed method increases the F1 score by 40% compared with the method without data augmentation, mitigating class imbalance without loss of classification accuracy.

유전자 알고리즘을 활용한 데이터 불균형 해소 기법의 조합적 활용

  • Jang, Yeong-Sik;Kim, Jong-U;Heo, Jun
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.309-320
    • /
    • 2007
  • The data imbalance problem which can be uncounted in data mining classification problems typically means that there are more or less instances in a class than those in other classes. It causes low prediction accuracy of the minority class because classifiers tend to assign instances to major classes and ignore the minor class to reduce overall misclassification rate. In order to solve the data imbalance problem, there has been proposed a number of techniques based on resampling with replacement, adjusting decision thresholds, and adjusting the cost of the different classes. In this paper, we study the feasibility of the combination usage of the techniques previously proposed to deal with the data imbalance problem, and suggest a combination method using genetic algorithm to find the optimal combination ratio of the techniques. To improve the prediction accuracy of a minority class, we determine the combination ratio based on the F-value of the minority class as the fitness function of genetic algorithm. To compare the performance with those of single techniques and the matrix-style combination of random percentage, we performed experiments using four public datasets which has been generally used to compare the performance of methods for the data imbalance problem. From the results of experiments, we can find the usefulness of the proposed method.

  • PDF

Intrusion Detection using Attribute Subset Selector Bagging (ASUB) to Handle Imbalance and Noise

  • Priya, A.Sagaya;Kumar, S.Britto Ramesh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.97-102
    • /
    • 2022
  • Network intrusion detection is becoming an increasing necessity for both organizations and individuals alike. Detecting intrusions is one of the major components that aims to prevent information compromise. Automated systems have been put to use due to the voluminous nature of the domain. The major challenge for automated models is the noise and data imbalance components contained in the network transactions. This work proposes an ensemble model, Attribute Subset Selector Bagging (ASUB) that can be used to effectively handle noise and data imbalance. The proposed model performs attribute subset based bag creation, leading to reduction of the influence of the noise factor. The constructed bagging model is heterogeneous in nature, hence leading to effective imbalance handling. Experiments were conducted on the standard intrusion detection datasets KDD CUP 99, Koyoto 2006 and NSL KDD. Results show effective performances, showing the high performance of the model.

Combined Application of Data Imbalance Reduction Techniques Using Genetic Algorithm (유전자 알고리즘을 활용한 데이터 불균형 해소 기법의 조합적 활용)

  • Jang, Young-Sik;Kim, Jong-Woo;Hur, Joon
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.3
    • /
    • pp.133-154
    • /
    • 2008
  • The data imbalance problem which can be uncounted in data mining classification problems typically means that there are more or less instances in a class than those in other classes. In order to solve the data imbalance problem, there has been proposed a number of techniques based on re-sampling with replacement, adjusting decision thresholds, and adjusting the cost of the different classes. In this paper, we study the feasibility of the combination usage of the techniques previously proposed to deal with the data imbalance problem, and suggest a combination method using genetic algorithm to find the optimal combination ratio of the techniques. To improve the prediction accuracy of a minority class, we determine the combination ratio based on the F-value of the minority class as the fitness function of genetic algorithm. To compare the performance with those of single techniques and the matrix-style combination of random percentage, we performed experiments using four public datasets which has been generally used to compare the performance of methods for the data imbalance problem. From the results of experiments, we can find the usefulness of the proposed method.

  • PDF

Convolutional neural network-based data anomaly detection considering class imbalance with limited data

  • Du, Yao;Li, Ling-fang;Hou, Rong-rong;Wang, Xiao-you;Tian, Wei;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • The raw data collected by structural health monitoring (SHM) systems may suffer multiple patterns of anomalies, which pose a significant barrier for an automatic and accurate structural condition assessment. Therefore, the detection and classification of these anomalies is an essential pre-processing step for SHM systems. However, the heterogeneous data patterns, scarce anomalous samples and severe class imbalance make data anomaly detection difficult. In this regard, this study proposes a convolutional neural network-based data anomaly detection method. The time and frequency domains data are transferred as images and used as the input of the neural network for training. ResNet18 is adopted as the feature extractor to avoid training with massive labelled data. In addition, the focal loss function is adopted to soften the class imbalance-induced classification bias. The effectiveness of the proposed method is validated using acceleration data collected in a long-span cable-stayed bridge. The proposed approach detects and classifies data anomalies with high accuracy.

Optimal Ratio of Data Oversampling Based on a Genetic Algorithm for Overcoming Data Imbalance (데이터 불균형 해소를 위한 유전알고리즘 기반 최적의 오버샘플링 비율)

  • Shin, Seung-Soo;Cho, Hwi-Yeon;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, with the development of database, it is possible to store a lot of data generated in finance, security, and networks. These data are being analyzed through classifiers based on machine learning. The main problem at this time is data imbalance. When we train imbalanced data, it may happen that classification accuracy is degraded due to over-fitting with majority class data. To overcome the problem of data imbalance, oversampling strategy that increases the quantity of data of minority class data is widely used. It requires to tuning process about suitable method and parameters for data distribution. To improve the process, In this study, we propose a strategy to explore and optimize oversampling combinations and ratio based on various methods such as synthetic minority oversampling technique and generative adversarial networks through genetic algorithms. After sampling credit card fraud detection which is a representative case of data imbalance, with the proposed strategy and single oversampling strategies, we compare the performance of trained classifiers with each data. As a result, a strategy that is optimized by exploring for ratio of each method with genetic algorithms was superior to previous strategies.

A Methodology for Bankruptcy Prediction in Imbalanced Datasets using eXplainable AI (데이터 불균형을 고려한 설명 가능한 인공지능 기반 기업부도예측 방법론 연구)

  • Heo, Sun-Woo;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.65-76
    • /
    • 2022
  • Recently, not only traditional statistical techniques but also machine learning algorithms have been used to make more accurate bankruptcy predictions. But the insolvency rate of companies dealing with financial institutions is very low, resulting in a data imbalance problem. In particular, since data imbalance negatively affects the performance of artificial intelligence models, it is necessary to first perform the data imbalance process. In additional, as artificial intelligence algorithms are advanced for precise decision-making, regulatory pressure related to securing transparency of Artificial Intelligence models is gradually increasing, such as mandating the installation of explanation functions for Artificial Intelligence models. Therefore, this study aims to present guidelines for eXplainable Artificial Intelligence-based corporate bankruptcy prediction methodology applying SMOTE techniques and LIME algorithms to solve a data imbalance problem and model transparency problem in predicting corporate bankruptcy. The implications of this study are as follows. First, it was confirmed that SMOTE can effectively solve the data imbalance issue, a problem that can be easily overlooked in predicting corporate bankruptcy. Second, through the LIME algorithm, the basis for predicting bankruptcy of the machine learning model was visualized, and derive improvement priorities of financial variables that increase the possibility of bankruptcy of companies. Third, the scope of application of the algorithm in future research was expanded by confirming the possibility of using SMOTE and LIME through case application.

Comparison of Loss Function for Multi-Class Classification of Collision Events in Imbalanced Black-Box Video Data (불균형 블랙박스 동영상 데이터에서 충돌 상황의 다중 분류를 위한 손실 함수 비교)

  • Euisang Lee;Seokmin Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2024
  • Data imbalance is a common issue encountered in classification problems, stemming from a significant disparity in the number of samples between classes within the dataset. Such data imbalance typically leads to problems in classification models, including overfitting, underfitting, and misinterpretation of performance metrics. Methods to address this issue include resampling, augmentation, regularization techniques, and adjustment of loss functions. In this paper, we focus on loss function adjustment, particularly comparing the performance of various configurations of loss functions (Cross Entropy, Balanced Cross Entropy, two settings of Focal Loss: 𝛼 = 1 and 𝛼 = Balanced, Asymmetric Loss) on Multi-Class black-box video data with imbalance issues. The comparison is conducted using the I3D, and R3D_18 models.

Handling Method of Imbalance Data for Machine Learning : Focused on Sampling (머신러닝을 위한 불균형 데이터 처리 방법 : 샘플링을 위주로)

  • Lee, Kyunam;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.567-577
    • /
    • 2019
  • Recently, more and more attempts have been made to solve the problems faced by academia and industry through machine learning. Accordingly, various attempts are being made to solve non-general situations through machine learning, such as deviance, fraud detection and disability detection. A variety of attempts have been made to resolve the non-normal situation in which data is distributed disproportionately, generally resulting in errors. In this paper, we propose handling method of imbalance data for machine learning. The proposed method to such problem of an imbalance in data by verifying that the population distribution of major class is well extracted. Performance Evaluations have proven the proposed method to be better than the existing methods.