• Title/Summary/Keyword: Daysim

Search Result 6, Processing Time 0.024 seconds

A Study on the Evaluation of Lighting Energy Consumption by Control Strategy of the Electric Lighting (전기조명 제어 전략에 따른 조명에너지 소비량 평가에 관한 연구)

  • Yun, Gyeong;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.119-125
    • /
    • 2012
  • The objective of this study is to evaluate the electric lighting energy consumption carried out by Daysim program. A comparison between the measurement and simulated exterior global horizontal illuminance shows differences about 10% and it is very similar to the measurement. The interior illuminance simulated by Daysim are 18.9% lower than the measurement and simulated lighting energy consumption is 10% lower than the measurement. Corrected annual lighting energy simulation results show that the best case is the combination of occupancy switch-off and dimming system with automatic controlled blinds (E-3). In case of no blinds, it occasionally derives the minimum lighting energy consumption but it causes the glare, so we need to be careful for choosing the control strategy. For the overcast sky, the lighting energy consumption is not changed significantly by control strategy while the lighting energy in the clear sky is changed noticeably. So we must know the right strategy for each case to control the electric lights and blinds.

Application of the Daylight Factor Formula with the Modified Split Flux (Modified Split Flux를 이용한 주광률 계산식 적용에 관한 연구)

  • Yun, Su-In;Yun, Gyeong;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.39-47
    • /
    • 2014
  • Daylighting has a great effect on people inside the room. It is also closely related to the lighting energy consumption. Daylight factor(DF) is a very important index for evaluation of the daylighting in overcast sky. The objective of this study is to verify the suitability of the Tregenza's Modified Split Flux formula for the calculation of the daylight factor. We compared the daylight factors calculated by two methods; one by a measurement with 1/5 scale model and the other by the Daysim program. We used variables for verification as window wall ratios(WWR) and angles of the sky visible. As a result, daylight factor calculated by Modified Split Flux is similar to the measurement when more daylight enters the inside. And error is significantly increased when the angle of the sky visible is $50^{\circ}$.

Evaluation of Daylighting Performance in Office Building with Detailed Global Illuminance Data of Selected Korean Cities (정밀 전천공조도 데이터를 활용한 국내 주요도시 업무용 건물의 자연채광 활용성능 평가)

  • Choi, Su-Hyun;Shin, Sang-Yong;Seo, Dong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.37-46
    • /
    • 2016
  • In this study, long-term global illuminance data for 19 selected cities are calculated from modeled solar radiation data, AEER's TMY2. Perez model in Daysim daylight simulation tool is used for the solar radiation to illuminance conversion. And then, daylight availability in an unit office space is evaluated for the 19 cities. For this evaluation, various daylight performance indices are reviewed since static daylight performance index such as daylight factor (DF) and annual average global illuminance value is not suitable for actual performance evaluation in terms of visual comfort and light energy saving of a space. This study evaluated daylighting performance of prototypical office space module by introducing DA (daylight autonomy) and UDI (Useful Daylight Illuminance) index for major cities of Korea. Result shows that there is upto 18% of illuminance level difference with annual average global illuminance data, but if we consider useful daylight in a space the illuminance level difference among the cities are only within 5%. This means that for sustainable building design especially in daylight design, amount of annual global illuminance is not important factor even in cloudy cities. Daylight design and daylight harvesting system would return similar energy saving impact regardless of building location.

Evaluation of the daylight performance of adjacent interior spaces in four-sided atrium according to the height ratio of atrium, and the transmittance of atrium canopy (4면형 아트리움의 높이비와 천창 투과율에 따른 인접 실내공간의 자연채광성능 평가)

  • Yu, Ha-Nui;Lee, Ju-Yun;Song, Kyoo-Dong
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.57-62
    • /
    • 2010
  • Studies on daylighting of buildings have been continuously increased due to the recent escalating oil price and low-carbon strategies in developed countries. Daylighting of buildings not only saves electric energy, but provide the occupants with a comfort visual environment. Atrium spaces are adopted by many modern buildings to improve daylight performance of deep interior spaces. Among the various types of atria, the four-sided type atrium is frequently adopted by library buildings, governmental buildings and office buildings. This study aims to suggest daylighting design data for adjacent occupied spaces by conducting dynamic simulations using Daysim program. Daylight Factor(DF), Daylight Autonomy(DA) and Useful Daylight Illuminance(UDI) levels for 12 measurement points in adjacent occupied spaces were calculated for square-shape four-sided atria with different SAR(Section Aspect Ratio) and different canopy transmittance.

The Visual Performance Evaluation of the Work planes with the Automated blind Control in Small Office Spaces

  • Park, Doo-Yong;Yoon, Kap-Chun;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Among the various building envelope elements, the glass area takes up the largest portion in the office building design. However, a large area of glass can cause problems such as excessive solar radiation, thermal comfort, and glare. Thus it is important to install the glass area to an appropriate level, and control solar radiation and inflow of daylight with blind devices. This study aims to improve the visual performance of the work plane through the automatic control of the venetian blinds. A total of eight kinds of control strategies were chosen; Case 1 does not control the blinds, Case 2 with the blind slats fixed at the angle of 0 degree, Case 3 to 6 using the existing blind control programs, and Case 7 and 8 with improved blind control. Case 3 with 90 degrees had the best energy performance, but the average indoor illuminance was 113lux, which is below the standards. Cases 4 and 5 showed higher levels of interior daylight illuminance with the average of 281lux and 403lux respectively. However, the fixed angles may have difficulties controlling excessive direct sunlight coming into the room and may cause glare. Cases 6 and 7 used sun tracking angle control and cut-off angle control, and the average interior illuminance was measured 250lux and 385lux respectively. Case 8 used the cut-off angle control in an hourly manner, satisfying the standard illuminance of 400lux with an average interior illuminance of 561lux. It was evaluated to be the best method to control direct solar radiation and to guarantee proper level of interior illumination.

Evaluation of Lighting Energy Saving Rate in a Small Office Space (소규모 사무공간의 조명에너지 절감율 평가에 관한 연구)

  • Kim, Han-Yong;Yun, Gyeong;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.50-58
    • /
    • 2012
  • The objective of this study is to evaluate the lighting dimming rates with various parameters of the building skin in a small office. We compared to simulated workplane illuminance and measured workplane illuminance for the base model. After that, the five veriables(the presence of vertical wall in double skin facade, the presence of windowsill, window to wall ratio(WWR), window visible transmittance, the width of double skin facade) were applied to base model, and we analyzed the simulated lighting energy saving rates. The results are listed as below. The simulated workplane illuminance results are similar to the measurement. Simulated illuminance was smaller than measured illuminance by 16.5%(60 lx). In accordance with applicable building skin parameters, lighting energy saving rate results are summarized as follows. Lighting energy saving rate of case1(windowsill height 0.7m) is higher than that of base case(windowsill and vertical wall) by 7.3% and the lighting energy saving rate of case2(no vertical wall) is higher than that of base case by 7.6% and the lighting energy saving rate of case3(no windowsill and vertical wall) is higher than that of base case by 12.4%. The lighting energy saving rate is increased by 2.3%, when window visible transmittance is increased from 70% to 86%. The lighting energy saving rate is increased by 4.6%, when we changed the WWR 70% to 90%. lighting energy savings rate is increased by 6.5%, when the width of double skin facade is reduced from 1m to 0.3m.