• Title/Summary/Keyword: Decay rate

Search Result 597, Processing Time 0.035 seconds

Experimenting biochemical oxygen demand decay rates of Malaysian river water in a laboratory flume

  • Nuruzzaman, Md.;Al-Mamun, Abdullah;Salleh, Md. Noor Bin
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.99-106
    • /
    • 2018
  • Lack of information on the Biochemical Oxygen Demand (BOD) decay rates of river water under the tropical environment has triggered this study with an aim to fill the gap. Raw sewage, treated sewage, river water and tap water were mixed in different proportions to represent river water receiving varying amounts and types of wastewater and fed in a laboratory flume in batch mode. Water samples were recirculated in the flume for 30 h and BOD and Carbonaceous BOD (CBOD) concentrations were measured at least six times. Decay rates were obtained by fitting the measured data in the first order kinetic equation. After conducting 12 experiments, the range of BOD and CBOD decay rates were found to be 0.191 to 0.92 per day and 0.107 to 0.875 per day, respectively. Median decay rates were 0.344 and 0.258 per day for BOD and CBOD, respectively, which are slightly higher than the reported values in literatures. A relationship between CBOD decay rate and BOD decay rate is proposed as $k_{CBOD}=0.8642_{k_{BOD}}-0.0349$ where, $k_{CBOD}$ is CBOD decay rate and $k_{BOD}$ is BOD decay rate. The equation can be useful to extrapolate either of the decay rates when any of the rates is unknown.

A Study on the Error Associated with Ventilation Rate Calculation Using Different Sampling Intervals (측정시간에 따른 거주주택의 환기량 계산 오류에 관한 연구)

  • 양원호;배현주;이기영;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.50-54
    • /
    • 2000
  • Ventilation rates can be measured directly by a tracer decay method, although little is known of the effects of different sampling intervals on decay rte calculations. This study determined variations in decay rates calculated by three techniques using residential ozone decay data. The calculation techniques were a regression technique, decay techniques using half-life and average-life, and finite difference techniques using two different time intervals. Variation associated with regression technique calculations for residential ozone decay rates based on data from both sample intervals were within 10% (2.81$\pm$1.88 hr-1). However, both half-life and finite difference technique calculations using a shorter-time interval were significantly different from those obtained with the regression technique(p<0.05). Therefore, the use of short sampling intervals in tracer decay may cause significant error in decay rate calculations.

  • PDF

Distribution of BOD Decay Rate in Streams and Reservoirs (국내 수계에서의 BOD분해속도계수 분포)

  • Jang, Changwon;Kim, Donghwan;Lee, Jaeyong;Kim, Yeonju;Jung, Sungmin;Shin, Changmin;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2012
  • BOD decay rate is a key parameter of BOD-DO models in streams and lakes. In the calibration of water quality modeling appropriate range of coefficient is required for guidance of parameter selection. In this study BOD decay rate was measured at 48 stream sites and 10 reservoir sites in 8 different river systems. The decay rate ranged from 0.09 to 0.25 $day^{-1}$ with a mean of 0.16 $day^{-1}$. Among river systems the decay rates showed significantly different ranges, with the Han River system showing higher values than other river systems. In comparing different types of water bodies, the decay rate was slightly higher in tributaries than in reservoirs and mainstreams. Our results can provide guidance to the selection of proper coefficient for various water bodies in the calibration of water quality models.

Studies on Chlorine Demand and Its Decay Kinetics in Chlorinated Sewage Effluents (하수의 염소 소독시 총잔류염소 감소 특성에 관한 연구)

  • Beck, Youngseog;Sohn, Jinsik
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.176-183
    • /
    • 2005
  • Chlorination of wastewater is recently practiced in Korea. While many researchers have studied the kinetics of aqueous chlorine(HOCl) with nitrogeneous compounds and other organic/inorganic contaminants in drinking water, the researches of wastewater chlorination are relatively few. The purpose of this study was to investigate the chlorine decay kinetics and parameters on wastewater chlorination. Chlorine decay rate increased with increasing initial chlorine concentration. The parameters affecting chlorine decay rate were different in each wastewater treatment plant. One of the most important parameters affecting chlorine decay was initial chlorine concentration, and other parameters such as $NH_3-N$, total coliform, $UV_{254}$ and Fe were also affected. The decay ratio of chlorine was decreased with increasing initial chlorine concentration, and the disinfection efficiency showed good correlation with the decay ratio.

Effect of Degradation Processes on Optimal Remediation Design Sorption and First-Order Decay Rate

  • Park, Dong-Kyu;Ko, Nak-Youl;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.503-508
    • /
    • 2004
  • Optimal remediation design using the pump and treat(P&T) method and natural attenuation was accomplished in consideration for degradation processes, such as sorption and first-order decay rate. Variation of both sorption and first-order decay rate has influence on design of optimal remediation application. When sorption effect increases, the more pumping rate and pumping wells are required. The location of operated wells is on the centerline of contaminant plume and wells near hot spot are mainly operated when sorption effect increases. The higher of first-order decay rate, the less pumping rate is required. These results show that the degradation processes have to be considered as one of the essential factors for optimal remediation design.

  • PDF

Continous rail absorber design using decay rate calculation in FEM

  • Molatefi, Habibollah;Izadbakhsh, Soroush
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.455-466
    • /
    • 2013
  • In recent years, many countries have added railway noise to the issues covered by noise regulations. It is known that the rail is the dominant source of rolling noise at frequency range of 500Hz-2000Hz for the conventional speeds (<160km/h). One of the effective ways to reduce noise from railway track is using a rail vibration absorber. To study the acoustic performance of rail absorber, the decay rates of vibration have long been used by researcher. In this paper, A FE model of a periodic supported rail with infinite element in ABAQUS is developed to study the acoustic performance of the rail absorber. To compute the decay rates, acceleration responses along the rail transferred to MATLAB to obtain response levels in frequency domain and then by processing the response levels, the decay rates obtained for each1/3octav band. Continous rail absorber is represented by a steel layer and an elastomer layer. The decay rates for conventional rail and rail with one-side absorber and also, the rail with two side absorber are obtained and compared. Then, to improve the system of rail absorber, a steel plate with elastomer layer is added to bottom of the rail foot. The vertical decay rate results show that the decay rate of rail vibration along the track is significantly increased around the tuned frequency of the absorber and thus the rail vibration energy is substantially reduced in the corresponding frequency region and also effective in rail noise reduction.

Decay Resistance of Fire-Retardant Treated Wood

  • Lee, Hyun-Mi;Yang, Jae-Kyung;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.7-13
    • /
    • 2004
  • In this study, the Korean pine wood (Pinus densiflora Sieb. et Zucc) and Italian poplar wood (Populus euramericana Guinier) was treated with a mixture of monoammonium phosphate (MAP) and boric acid. Their usability as fire retardant and as decay-resistant construction and interior materials were evaluated by testing of chemicals, corrosion rate and absorption rate, weight loss and chemical contents. An experiment was performed to compare treated pine wood and Italian poplar wood. According to the results, Italian poplar wood had higher specific gravity and retention of chemicals than pine wood, and treated wood showed higher decay-resistance than untreated one. Weight loss was less in treated wood than untreated one because the degree of decay was lower in the former than the latter. Corrosion rate and absorption rate met the KS standard for wood preservative performance. The chemical contents analysis was carried out to determine the degree of decay and it was found that the preservative effect of chemical treatment was lower in Italian poplar wood than in pine wood.

Decay Rate of the Nitrogen Dioxide in Indoor Residence Using Mass Balance Model (물질수지 모델을 이용한 주택 실내의 이산화질소 감소율)

  • 유승진;배현주;양원호;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 2001
  • The purpose of this study was to determine nitrogen dioxide(NO$_2$) decay rate by reaction between NO$_2$ and interior materials in Korean residence. The results of this research could be helpful to choose the interior construction materials and to study on reduction of indoor air pollutants. The results of this research are as follows; For 30 residences in Seoul and Incheon from October 2000 to march 2001, the mean of infiltration rate was 0.70$\pm$0.44 ACH, and single-detached houses (7 houses) and apartments (19 houses) were 0.97$\pm$0.55 ACH and 0.61$\pm$0.34 ACH, respectively. The $CO_2$ decay followed approximately first-order process ($R^2$=0.97$\pm$0.02). There existed a statistic significance in filtration rate between houses built in 1980’s and built in 1990’s by t-test (p<0.02). Mean of NO$_2$ decay rates in 26 residence3s except 4 residences was 0.94$\pm$0.49hr$^{-1}$ , and also 0.86$\pm$0.49hr$^{-1}$ , 0.97$\pm$0.50hr$^{-1}$ in single-detached houses and apartments, respectively. Mean NO$_2$ decay rates in houses built in 1980’s were 0.78$\pm$0.37hr$^{-1}$ , 1.33$\pm$1.03hr$^{-1}$ , respectively. Nothing were showed statistical significance among indoor temperature, indoor humidity, and NO$_2$ decay rate. However, NO$_2$ decay rates had a tendency to increase by increase of temperature and humidity. Average volume/surface of participated houses was 0.55$\pm$0.07m and mean NO$_2$ deposition velocity was calculated as 1.46$\pm$0.59msec$^{-1}$ .

  • PDF