• Title/Summary/Keyword: Dedekind ring

Search Result 18, Processing Time 0.029 seconds

ON SEMI-REGULAR INJECTIVE MODULES AND STRONG DEDEKIND RINGS

  • Renchun Qu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.1071-1083
    • /
    • 2023
  • The main motivation of this paper is to introduce and study the notions of strong Dedekind rings and semi-regular injective modules. Specifically, a ring R is called strong Dedekind if every semi-regular ideal is Q0-invertible, and an R-module E is called a semi-regular injective module provided Ext1R(T, E) = 0 for every 𝓠-torsion module T. In this paper, we first characterize rings over which all semi-regular injective modules are injective, and then study the semi-regular injective envelopes of R-modules. Moreover, we introduce and study the semi-regular global dimensions sr-gl.dim(R) of commutative rings R. Finally, we obtain that a ring R is a DQ-ring if and only if sr-gl.dim(R) = 0, and a ring R is a strong Dedekind ring if and only if sr-gl.dim(R) ≤ 1, if and only if any semi-regular ideal is projective. Besides, we show that the semi-regular dimensions of strong Dedekind rings are at most one.

ON 𝜙-SHARP RINGS

  • Darani, Ahmad Yousefian;Rahmatinia, Mahdi
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.237-246
    • /
    • 2016
  • The purpose of this paper is to introduce some new class of rings that are closely related to the classes of sharp domains, pseudo-Dededkind domains, TV domains and finite character domains. A ring R is called a ${\phi}$-sharp ring if whenever for nonnil ideals I, A, B of R with $I{\supseteq}AB$, then I = A'B' for nonnil ideals A', B' of R where $A^{\prime}{\supseteq}A$ and $B^{\prime}{\supseteq}B$. We proof that a ${\phi}$-Dedekind ring is a ${\phi}$-sharp ring and we get some properties that by them a ${\phi}$-sharp ring is a ${\phi}$-Dedekind ring.

A Characterization of Dedekind Domains and ZPI-rings

  • Rostami, Esmaeil
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.433-439
    • /
    • 2017
  • It is well known that an integral domain D is a Dedekind domain if and only if D is a Noetherian almost Dedekind domain. In this paper, we show that an integral domain D is a Dedekind domain if and only if D is an almost Dedekind domain such that Max(D) is a Noetherian topological space as a subspace of Spec(D) with respect to the Zariski topology. We also give a new characterization of ZPI-rings.

EVERY ABELIAN GROUP IS THE CLASS GROUP OF A RING OF KRULL TYPE

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.149-171
    • /
    • 2021
  • Let Cl(A) denote the class group of an arbitrary integral domain A introduced by Bouvier in 1982. Then Cl(A) is the ideal class (resp., divisor class) group of A if A is a Dedekind or a Prüfer (resp., Krull) domain. Let G be an abelian group. In this paper, we show that there is a ring of Krull type D such that Cl(D) = G but D is not a Krull domain. We then use this ring to construct a Prüfer ring of Krull type E such that Cl(E) = G but E is not a Dedekind domain. This is a generalization of Claborn's result that every abelian group is the ideal class group of a Dedekind domain.

THE HOMOLOGICAL PROPERTIES OF REGULAR INJECTIVE MODULES

  • Wei Qi;Xiaolei Zhang
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.59-69
    • /
    • 2024
  • Let R be a commutative ring. An R-module E is said to be regular injective provided that Ext1R(R/I, E) = 0 for any regular ideal I of R. We first show that the class of regular injective modules have the hereditary property, and then introduce and study the regular injective dimension of modules and regular global dimension of rings. Finally, we give some homological characterizations of total rings of quotients and Dedekind rings.

A NOTE ON THE VALUATION

  • Park, Joong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 1994
  • Classically, valuation theory is closely related to the theory of divisors and conversely. If D is a Dedekined ring and K is its quotient field, then we can clearly construct the theory of divisors on D (or K), and then we can induce all the valuations on K ([3]). In particular, if K is a number field and A is the ring of algebraic integers, then since Z is Dedekind, A is a Dedekind rign and K is the field of fractions of A.(omitted)

  • PDF

Some Results on Simple-Direct-Injective Modules

  • Derya Keskin Tutuncu;Rachid Tribak
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.521-537
    • /
    • 2023
  • A module M is called a simple-direct-injective module if, whenever A and B are simple submodules of M with A ≅ B and B is a direct summand of M, then A is a direct summand of M. Some new characterizations of these modules are proved. The structure of simple-direct-injective modules over a commutative Dedekind domain is fully determined. Also, some relevant counterexamples are indicated to show that a left simple-direct-injective ring need not be right simple-direct-injective.

MULTIPLICATION MODULES OVER PULLBACK RINGS (I)

  • ATANI, SHAHABADDIN EBRAHIMI;LEE, SANG CHEOL
    • Honam Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.69-81
    • /
    • 2006
  • First, we give a complete description of the multiplication modules over local Dedekind domains. Second, if R is the pullback ring of two local Dedekind domains over a common factor field then we give a complete description of separated multiplication modules over R.

  • PDF

ZPI Property In Amalgamated Duplication Ring

  • Hamed, Ahmed;Malek, Achraf
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.205-211
    • /
    • 2022
  • Let A be a commutative ring. We say that A is a ZPI ring if every proper ideal of A is a finite product of prime ideals [5]. In this paper, we study when the amalgamated duplication of A along an ideal I, A ⋈ I to be a ZPI ring. We show that if I is an idempotent ideal of A, then A is a ZPI ring if and only if A ⋈ I is a ZPI ring.