• Title/Summary/Keyword: Dedekind sum

Search Result 6, Processing Time 0.021 seconds

EQUIDISTRIBUTION OF HIGHER DIMENSIONAL GENERALIZED DEDEKIND SUMS AND EXPONENTIAL SUMS

  • Chae, Hi-joon;Jun, Byungheup;Lee, Jungyun
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.845-871
    • /
    • 2020
  • We consider generalized Dedekind sums in dimension n, defined as sum of products of values of periodic Bernoulli functions. For the generalized Dedekind sums, we associate a Laurent polynomial. Using this, we associate an exponential sum of a Laurent polynomial to the generalized Dedekind sums and show that this exponential sum has a nontrivial bound that is sufficient to fulfill the equidistribution criterion of Weyl and thus the fractional part of the generalized Dedekind sums are equidistributed in ℝ/ℤ.

MEAN VALUES OF THE HOMOGENEOUS DEDEKIND SUMS

  • WANG, XIAOYING;YUE, XIAXIA
    • Korean Journal of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.571-590
    • /
    • 2015
  • Let a, b, q be integers with q > 0. The homogeneous Dedekind sum is dened by $$\Large S(a,b,q)={\sum_{r=1}^{q}}\(\({\frac{ar}{q}}\)\)\(\({\frac{br}{q}}\)\)$$, where $$\Large ((x))=\{x-[x]-{\frac{1}{2}},\text{ if x is not an integer},\\0,\hspace{75}\text{ if x is an integer.}$$ In this paper we study the mean value of S(a, b, q) by using mean value theorems of Dirichlet L-functions, and give some asymptotic formula.

ON THE DENOMINATOR OF DEDEKIND SUMS

  • Louboutin, Stephane R.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.815-827
    • /
    • 2019
  • It is well known that the denominator of the Dedekind sum s(c, d) divides 2 gcd(d, 3)d and that no smaller denominator independent of c can be expected. In contrast, here we prove that we usually get a smaller denominator in S(H, d), the sum of the s(c, d)'s over all the c's in a subgroup H of order n > 1 in the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$. First, we prove that for p > 3 a prime, the sum 2S(H, p) is a rational integer of the same parity as (p-1)/2. We give an application of this result to upper bounds on relative class numbers of imaginary abelian number fields of prime conductor. Finally, we give a general result on the denominator of S(H, d) for non necessarily prime d's. We show that its denominator is a divisor of some explicit divisor of 2d gcd(d, 3).

ON THE MEAN VALUES OF DEDEKIND SUMS AND HARDY SUMS

  • Liu, Huaning
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.187-213
    • /
    • 2009
  • For a positive integer k and an arbitrary integer h, the classical Dedekind sums s(h,k) is defined by $$S(h,\;k)=\sum\limits_{j=1}^k\(\(\frac{j}{k}\)\)\(\(\frac{hj}{k}\)\),$$ where $$((x))=\{{x-[x]-\frac{1}{2},\;if\;x\;is\;not\;an\;integer; \atop \;0,\;\;\;\;\;\;\;\;\;\;if\;x\;is\;an\;integer.}\$$ J. B. Conrey et al proved that $$\sum\limits_{{h=1}\atop {(h,k)=1}}^k\;s^{2m}(h,\;k)=fm(k)\;\(\frac{k}{12}\)^{2m}+O\(\(k^{\frac{9}{5}}+k^{{2m-1}+\frac{1}{m+1}}\)\;\log^3k\).$$ For $m\;{\geq}\;2$, C. Jia reduced the error terms to $O(k^{2m-1})$. While for m = 1, W. Zhang showed $$\sum\limits_{{h=1}\atop {(h,k)=1}}^k\;s^2(h,\;k)=\frac{5}{144}k{\phi}(k)\prod_{p^{\alpha}{\parallel}k}\[\frac{\(1+\frac{1}{p}\)^2-\frac{1}{p^{3\alpha+1}}}{1+\frac{1}{p}+\frac{1}{p^2}}\]\;+\;O\(k\;{\exp}\;\(\frac{4{\log}k}{\log\log{k}}\)\).$$. In this paper we give some formulae on the mean value of the Dedekind sums and and Hardy sums, and generalize the above results.

EXPLICIT FORMULA FOR COEFFICIENTS OF TODD SERIES OF LATTICE CONES

  • Chae, Hi-Joon;Jun, Byungheup;Lee, Jungyun
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.73-79
    • /
    • 2015
  • Todd series are associated to maximal non-degenerate lattice cones. The coefficients of Todd series of a particular class of lattice cones are closely related to generalized Dedekind sums of higher dimension. We generalize this construction and obtain an explicit formula for coefficients of the Todd series. It turns out that every maximal non-degenerate lattice cone, hence the associated Todd series can be obtained in this way.

The Convolution Sum $\sum_{al+bm=n}{\sigma}(l){\sigma}(m)$ for (a, b) = (1, 28),(4, 7),(1, 14),(2, 7),(1, 7)

  • Alaca, Ayse;Alaca, Saban;Ntienjem, Ebenezer
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.377-389
    • /
    • 2019
  • We evaluate the convolution sum $W_{a,b}(n):=\sum_{al+bm=n}{\sigma}(l){\sigma}(m)$ for (a, b) = (1, 28),(4, 7),(2, 7) for all positive integers n. We use a modular form approach. We also re-evaluate the known sums $W_{1,14}(n)$ and $W_{1,7}(n)$ with our method. We then use these evaluations to determine the number of representations of n by the octonary quadratic form $x^2_1+x^2_2+x^2_3+x^2_4+7(x^2_5+x^2_6+x^2_7+x^2_8)$. Finally we express the modular forms ${\Delta}_{4,7}(z)$, ${\Delta}_{4,14,1}(z)$ and ${\Delta}_{4,14,2}(z)$ (given in [10, 14]) as linear combinations of eta quotients.