• Title/Summary/Keyword: Deformation Induced Martensite

Search Result 53, Processing Time 0.024 seconds

Effect of Deformation Induced Martensite Transformation on the Mechanical Properties in Austenitic Stainless Steel with High Mn (고 Mn 오스테나이트계 스테인리스강의 기계적성질에 미치는 가공유기 마르텐사이트 변태의 영향)

  • Hur, T.Y.;Han, H.S.;Lee, S.H.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.51-56
    • /
    • 2012
  • The effect of deformation induced martensite transformation on the mechanical properties in austenitic stainless steel with high Mn was studied. ${\alpha}$'-martensite was formed by deformation in austenitic stainless steel with high Mn. Deformation induced ${\alpha}$'-martensite was formed with surface relief by cold rolling. With the increase of deformation degree, volume fraction of deformation induced martensite was increased rapidly in early stage of deformation and then, increased slowly. With the increase of deformation degree, hardness and tensile strength were rapidly increased with linear relations, while elongation was rapidly decreased and then slowly decreased. Hardness, tensile strengths and elongation were influenced strongly by deformation induced martensite.

Effect of Thermo-Mechanical Treatment on the Damping Capacity of Alloy with Deformation Induced Martensite Transformation (가공유기 마르텐사이트 변태를 갖는 합금의 감쇠능에 미치는 가공열처리의 영향)

  • Han, Hyun-Sung;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.160-166
    • /
    • 2019
  • This study investigates the effect of thermo-mechanical treatment on the damping capacity of the Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. Dislocation, ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ are formed, and the grain size is refined by deformation and thermo-mechanical treatment. With an increasing number cycles in the thermo-mechanical treatment, the volume fraction of ${\varepsilon}-martensite$ increases and then decreases, whereas dislocation and ${\alpha}^{\prime}-martensite$ increases, and the grain size is refined. In thermo-mechanical treated specimens with five cycles, more than 10 % of the volume fraction of ${\varepsilon}-martensite$ and less than 3 % of the volume fraction of ${\alpha}^{\prime}-martensite$ are attained. Damping capacity decreases by thermo-mechanical treatment and with an increasing number of cycles of thermo-mechanical treatment, and this result shows an opposite tendency for general metal with deformation induced martensite transformation. The damping capacity of the thermo-mechanical treated damping alloy with deformation induced martensite transformation greatly affect the formation of dislocation, grain refining and ${\alpha}^{\prime}-martensite$ and then ${\varepsilon}-martensite$ formation by thermo-mechanical treatment.

Dependence of Damping Capacity on Volume Fractions of Thermal and Deformation-induced ${\varepsilon}$ Martensites in an Fe-Mn Alloy (Fe-Mn 합금에서 열적 ${\varepsilon}$ 마르텐사이트와 변형유기 ${\varepsilon}$ 마르텐사이트 부피분율에 대한 진동감쇠능의 의존성)

  • Jun, Joong-Hwan;Hong, Kwon-Pyo;Choi, Chong-Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.6
    • /
    • pp.272-278
    • /
    • 2002
  • The changes in damping capacity with volume fractions of thermal and deformation-induced ${\varepsilon}$ martensites were compared and analyzed in an Fe-23%-Mn alloy. The volume fraction of thermal ${\varepsilon}$ martensite increased with decreasing cooling temperature, whereas that of deformation-induced ${\varepsilon}$ martensite increased steeply up to 10%- of cold rolling and nearly saturated in further cold rolling. In the case of thermal ${\varepsilon}$ martensite, the damping capacity increased linearly with the increase in ${\varepsilon}$ martensite content. For the deformation-induced ${\varepsilon}$ martensite, however, the damping capacity increased continuously up to 70%- of ${\varepsilon}$ martensite, over which it decreased suddenly. TEM microstructures showed that the deterioration of damping capacity above 70%- of deformation-induced ${\varepsilon}$ martensite is ascribed to the introduction of perfect dislocations, which play a important role in inhibiting the movement of damping sources such as stacking fault boundaries inside ${\varepsilon}$ martensite, ${\varepsilon}$ martensite variant boundaries and ${\gamma}/{\varepsilon}$ interfaces.

Effect of Grain Size on the Deformation Induced Martensite Transformation and Mechanical Properties in Austenitic Stainless Steel with High Amount of Mn (고 Mn 오스테나이트계 스테인리스강의 가공유기 마르텐사이트 변태 및 기계적성질에 미치는 결정립크기의 영향)

  • Hur, T.Y.;Wang, J.P.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.271-276
    • /
    • 2011
  • The effect of grain size on the deformation induced martensite transformation and mechanical properties in austenitic stainless steel with high amount of Mn was studied. a'-martensite was formed by deformation and deformation induced martensite was formed with surface relief. With increase of grain size, volume fraction of deformation induced martensite was increased. With the increase in degree of cold rolling, hardness, and tensile strength was rapidly increased with linear relationship, while, elongation was decreased rapidly and then decreased slowly. With increase of grain size, hardness and tensile strength was rapidly increased with linear relationship, while elongation was decreased rapidly. The hardness, tensile strengths, and elongation were more strongly influenced by deformation induced martensite than the grain size.

Effect of Deformation Induced Martensite on the Damping Capacity of Fe-26Mn-4Co-2Al Alloy (Fe-26Mn-4Co-2Al 합금의 감쇠능에 미치는 가공 유기 마르텐사이트의 영향)

  • Jeong, Kyu-Seong;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.493-497
    • /
    • 2016
  • This study was carried out to investigate the effect of deformation induced martensite on the damping capacity of Fe-26Mn-4Co-2Al damping alloy. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite were formed by cold working, and; deformation induced martensite was formed with according to the specific direction and the surface relief. With an increasing degree of cold rolling, the volume fraction of ${\alpha}^{\prime}$-martensite increased rapidly, while the volume fraction of ${\varepsilon}$-martensite decreased after rising to a maximum value at a specific level of cold rolling. Damping capacity was increased, and then decreased with an increasing of the degree of cold rolling. Damping capacity was influenced greatly by the volume fraction of ${\varepsilon}$-martensite formed by cold working, but the effect of the volume fraction of ${\alpha}^{\prime}$-martensite have a actually on effect on the damping capacity.

Correlationship between Tensile Properties and Damping Capacity of 316 L Stainless Steel (316 L 스테인리스강의 인장성질과 감쇠능의 관계)

  • Kwoon, Min-Gi;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • This study is experimentally investigated whether or not a relationship exists between the mechanical properties and damping capacity of cold-rolled 316 L stainless steel. Deformation-induced martensite was formed with surface relief and directionality. With the increasing degree of deformation, the volume fraction of ${\varepsilon}$-martensite increased, and then decreased, while ${\alpha}^{\prime}$-martensite increased rapidly. With an increasing degree of deformation, tensile strength was increased, and elongation was decreased; however, damping capacity was increased, and then decreased. Tensile strength and elongation were affected in the ${\alpha}^{\prime}$-martensite; hence, damping capacity was influenced greatly by ${\varepsilon}$-martensite. Thus, there was no proportional relationship between strength, elongation, and damping capacity.

Tensile Properties of High Mn Austenitic Stainless Steel with Two Phases of Martensite and Austenite (마르텐사이트와 오스테나이트의 2상 조직을 갖는 고 Mn 오스테나이트계 스테인리스강의 인장성질)

  • Kim, Young-Hwa;Kang, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.9-13
    • /
    • 2013
  • The tensile properties of high manganese austenitic stainless steel with the two phase structures of deformation-induced martensite and reversed austenite were studied. Reversed austenite with an ultra-fine grain size of less than $0.3{\mu}m$ was obtained by reversion treatment. The two phases structures of deformation-induced martensite and reversed austenite were obtained by an annealing treatment in the range of $500^{\circ}C-700^{\circ}C$ for various times in 70% cold- rolled high-manganese austenitic stainless steel. The volume fraction of the reversed austenite increased rapidly with increases in the annealing temperature and time. In the stainless steel with the two phases of austenite and martensite, the strength decreased rapidly, while the elongation increased slowly and then rapidly increased with an increase in the volume fraction of the reversed austenite. Therefore, the strength and elongation were strongly controlled by the volume fraction of reversed austenite. A good combination of high strength and elongation could be obtained by the mixed structure of reversed austenite and deformation-induced martensite.

Effect of Deformation Temperature on Mechanical Properties of High Manganese Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 가공온도의 영향)

  • Kang, Chang-Yong;Hur, Tae-Young;Kim, Young-Hwa;Koo, Cha-Jin;Han, Hyun-Sung;Lee, Sang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.55-60
    • /
    • 2012
  • This study was carried out to investigate the effect of the deformation temperature in high manganese austenitic stainless steel. ${\alpha}$'-martensite was formed with a specific direction by deformation. The volume fraction of the deformation induced martensite was increased by increasing the degree of deformation and decreasing the deformation temperature. With the increase in the deformation, the hardness and tensile strength were increased, while the elongation was rapidly decreased at the initial stage of the deformation, and then gradually decreased. The hardness and tensile strength were increased and the elongation was decreased with adecrease in the deformation temperature. The hardness and tensile strength were strongly controlled by the volume fraction of martensite, but the elongation was controlled by the transformation behavior of the deformation induced martensite.

The Effect of grain size on the damping capacity of Fe-26Mn-2Al alloy (Fe-26Mn-2Al 합금의 진동 감쇠능에 미치는 결정립 크기의 영향)

  • Kang, C.Y.;Eom, J.H.;Kim, H.J.;Sung, J.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.115-120
    • /
    • 2007
  • The effect of grain size on the damping capacity of Fe-26Mn-2Al alloy studied in this paper has been investigated after changing the microstructure by cold rolling and changing grain size. Micro structures in Fe-26Mn-2Al at room temperature consist of a large quantity of austenite and a small quantity of ${\varepsilon}\;and\;{\alpha}'$ martensite. And ${\varepsilon}\;and\;{\alpha}'$ martensite was increased by increasing the degree of cold rolling. The content of deformation induced martensite was increased with increasing the degree of cold rolling. Damping capacity was linearly increased with increasing ${\varepsilon}$ martensite content, which suggests that stacking faults and ${\varepsilon}$ martensite variant boundaries are the principle damping sources. With increasing the grain size in Fe-26Mn-2Al alloy, the damping capacity was increased due to increasing the volume fraction of ${\varepsilon}$ martensite by decrement in stability of austenite phase. With decreasing the grain size, the content of deformation induced martensite was decreased and the damping capacity was decreased.

  • PDF

Effect of Thermo-mechanical Treatment on the Tensile Properties of Fe-20Mn-12Cr-3Ni-3Si Damping Alloy (Fe-20Mn-12Cr-3Ni-3Si 합금의 인장성질에 미치는 가공열처리의 영향)

  • Han, H.S.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2019
  • This study was carried out to investigate the effect of thermo-mechanical treatment on the tensile properties of Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite, dislocation, stacking fault were formed, and grain size was refined by thermo-mechanical treatment. With the increasing cycle number of thermo-mechanical treatment, volume fraction of ${\varepsilon}$ and ${\alpha}^{\prime}$-martensite, dislocation, stacking fault were increased, and grain size decreased. In 5-cycle number thermo-mechanical treated specimens, more than 10% of the volume fraction of ${\varepsilon}$-martensite and less than 3% of the volume fraction of ${\alpha}^{\prime}$-martensite were attained. Tensile strength was increased and elongation was decreased with the increasing cycle number of thermo-mechanical treatment. Tensile properties of thermo-mechanical treated alloy with deformation induced martensite transformation was affected to formation of martensite by thermo-mechanical treatment, but was large affected to increasing of dislocation and grain refining.