• Title/Summary/Keyword: Deinococcus radiodurans

Search Result 23, Processing Time 0.027 seconds

Hsp20, a Small Heat Shock Protein of Deinococcus radiodurans, Confers Tolerance to Hydrogen Peroxide in Escherichia coli

  • Singh, Harinder;Appukuttan, Deepti;Lim, Sangyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1118-1122
    • /
    • 2014
  • The present study shows that DR1114 (Hsp20), a small heat shock protein of the radiation-resistant bacterium Deinococcus radiodurans, enhances tolerance to hydrogen peroxide ($H_2O_2$) stress when expressed in Escherichia coli. A protein profile comparison showed that E. coli cells overexpressing D. radiodurans Hsp20 (EC-pHsp20) activated the redox state proteins, thus maintaining redox homeostasis. The cells also showed increased expression of pseudouridine (psi) synthases, which are important to the stability and proper functioning of structural RNA molecules. We found that the D. radiodurans mutant strain, which lacks a psi synthase (DR0896), was more sensitive to $H_2O_2$ stress than wild type. These suggest that an increased expression of proteins involved in the control of redox state homeostasis along with more stable ribosomal function may explain the improved tolerance of EC-pHsp20 to $H_2O_2$ stress.

Distribution of ddr (DNA damage response) Genes among Species of Deinococcus

  • Lim, Sangyong;Jung, Sunwook;Joe, Minho;Kim, Dongho
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.289-295
    • /
    • 2010
  • The bacterium Deinococcus radiodurans is one of the most resistant organisms to the effects of ionizing radiation and other DNA-damaging agents. In this study, distributions of 10 ddr (DNA damage response) genes were investigated in 8 species of Deinococcus by polymerase chain reaction (PCR). We have compared the sequences of ddr genes of D. radiodurans, D. geothermalis and D. deserti, and selected primers which are suitable for the detection of ddr in different species of Deinococcus. A sequence homology search and PCR assay showed that ddrO, which encodes a global regulator of the radiation-desiccation response, was most well conserved in the Deinococcus lineage.

Analysis of Double Stranded DNA-dependent Activities of Deinococcus radiodurans RecA Protein

  • Kim, Jong-Il
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.508-514
    • /
    • 2006
  • In this study, the double-stranded DNA-dependent activities of Deinococcus radiodurans RecA protein (Dr RecA) were characterized. The interactions of the Dr RecA protein with double-stranded DNA were determined, especially dsDNA-dependent ATP hydrolysis by the Dr RecA protein and the DNA strand exchange reaction, in which multiple branch points exist on a single RecA protein-DNA complex. A nucleotide cofactor (ATP or dATP ) was required for the Dr RecA protein binding to duplex DNA. In the presence of dATP, the nucleation step in the binding process occurred more rapidly than in the presence of ATP. Salts inhibited the binding of the Dr RecA protein to double-stranded DNA. Double-stranded DNA-dependent ATPase activities showed a different sensitivity to anion species. Glutamate had only a minimal effect on the double-stranded DNA-dependent ATPase activities, up to a concentration of 0.7 M. In the competition experiment for Dr RecA protein binding, the Dr RecA protein manifested a higher affinity to double-stranded DNA than was observed for single-stranded DNA.

Identification and Functional Analysis of RelA/SpoT Homolog (RSH) Genes in Deinococcus radiodurans

  • Wang, Jinhui;Tian, Ye;Zhou, Zhengfu;Zhang, Liwen;Zhang, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2106-2115
    • /
    • 2016
  • To identify the global effects of (p)ppGpp in the gram-positive bacterium Deinococcus radiodurans, which exhibits remarkable resistance to radiation and other stresses, RelA/SpoT homolog (RSHs) mutants were constructed by direct deletion mutagenesis. The results showed that RelA has both synthesis and hydrolysis domains of (p)ppGpp, whereas RelQ only synthesizes (p)ppGpp in D. radiodurans. The growth assay for mutants and complementation analysis revealed that deletion of relA and relQ sensitized the cells to $H_2O_2$, heat shock, and amino acid limitation. Comparative proteomic analysis revealed that the bifunctional RelA is involved in DNA repair, molecular chaperone functions, transcription, the tricarboxylic acid cycle, and metabolism, suggesting that relA maintains the cellular (p)ppGpp levels and plays a crucial role in oxidative resistance in D. radiodurans. The D. radiodurans relA and relQ genes are responsible for (p)ppGpp synthesis/hydrolysis and (p)ppGpp hydrolysis, respectively. (p)ppGpp integrates a general stress response with a targeted re-programming of gene regulation to allow bacteria to respond appropriately towards heat shock, oxidative stress, and starvation. This is the first identification of RelA and RelQ involvement in response to oxidative, heat shock, and starvation stresses in D. radiodurans, which further elucidates the remarkable resistance of this bacterium to stresses.

Enhanced Lycopene Production by UV-C Irradiation in Radiation-Resistant Deinococcus radiodurans R1

  • Kang, Chang Keun;Yang, Jung Eun;Park, Hae Woong;Choi, Yong Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1937-1943
    • /
    • 2020
  • Although classical metabolic engineering strategies have succeeded in developing microbial strains capable of producing desired bioproducts, metabolic imbalance resulting from extensive genetic manipulation often leads to decreased productivity. Thus, abiotic strategies for improving microbial production performance can be an alternative to overcome drawbacks arising from intensive metabolic engineering. Herein, we report a promising abiotic method for enhancing lycopene production by UV-C irradiation using a radiation-resistant ΔcrtLm/crtB+dxs+ Deinococcus radiodurans R1 strain. First, the onset of UV irradiation was determined through analysis of the expression of 11 genes mainly involved in the carotenoid biosynthetic pathway in the ΔcrtLm/crtB+dxs+ D. radiodurans R1 strain. Second, the effects of different UV wavelengths (UV-A, UV-B, and UV-C) on lycopene production were investigated. UV-C irradiation induced the highest production, resulting in a 69.9% increase in lycopene content [64.2 ± 3.2 mg/g dry cell weight (DCW)]. Extended UV-C irradiation further enhanced lycopene content up to 73.9 ± 2.3 mg/g DCW, a 95.5% increase compared to production without UV-C irradiation (37.8 ± 0.7 mg/g DCW).

Characterization of Single Stranded DNA-Dependent ATPase Activities of Deinococcus radiodurans RecA Protein (Deinococcus radiodurans RecA 단백질의 외가닥 DNA-의존성 ATPase 활성 분석)

  • Kim, Jong-Il
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.250-255
    • /
    • 2007
  • The RecA protein of Deinococcus radiodurans is essential for the extreme radiation resistance of this organism. The central steps involved in recombinational DNA repair require DNA-dependent ATP hydrolysis by recA protein. Key feature of RecA protein-mediated activities is the interactions with ssDNA and dsDNA. The ssDNA is the site where RecA protein filament formation nucleates and where initiation of DNA strand exchange takes place. The effect of sequence heterogeneity of ssDNA was examined in this experiment. The rate of homopolymeric synthetic ssDNA-dependent ATP hydrolysis was constant or nearly so over a broader range of pHs. For poly(dT)-dependent ATP or dATP hydrolysis, rates were generally faster, with a broader optimum between pH 7.0 and 8.0. Activities of RecA protein were affected by the ionic environment. The ATPase activity was shown to have different sensitivity to anionic species. The presence of glutamate seemed to slimulate the hydrolytic activity. Dr RecA protein was shown to require $Mg^{2+}$ ion greater than 2 mM for binding to etheno ssDNA and the binding stoichiometry of 3 nucleotide for RecA protein monomer.

Production of Bacteriophytochrome Specific Antibodies of Deinococcus radiodurans (Deinococcus radiodurans 박테리오피토크롬 특이 항체들의 생산)

  • Kim, Tae-Lim;Hahn, Tae-Ryong;Bhoo, Seong-Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.2
    • /
    • pp.112-115
    • /
    • 2010
  • To analyze the surface properties of bacteriophytochrome (BphP), five (2B8, 2C11, 3B2, 3D2, 3H7) anti-BphP monoclonal antibodies were produced by using full-length of BphP of Deinococcus radiodurnas. 2B8 and 2C11 preferentially recognized the epitopes at N-terminal region of BphP, whereas 3B2, 3D2 and 3H7 showed preferential affinities to the epitopes of C-terminal region of BphP.

Research Perspective of an Extremophilic Bacterium, Deinococcus radiodurans on Bioremediation of Radioactive Wastes (방사성 폐기물의 생물정화를 위한 극한세균 데이노코쿠스 라디오두란스의 연구적 고찰)

  • Jeong, Sun-Wook;Choi, Yong Jun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • Increasing concerns on radioactive wastes have drawn much attention on the development of remediation technologies. Massive amounts of radioactive wastes generated from hospital and nuclear power plants were exposed to our environment. Although physicochemical removal methods were developed, an eco-friendly remediation method has not yet been demonstrated. Recently, an extremophilic bacterium has received much attention due to their extraordinary characteristics. Among them, Deinococcus radiodurans (D. radiodurans) strain was regarded as the best host organism for the removal of radioactive heavy metals and radionuclides, because of their superb characteristics like tolerance against the high level of radioactivity. In this article, we briefly introduced the extraordinary nature of D. radiodurans and also discussed the potential use of D. radiodurans strain for the removal of radioactive wastes.

DNA-Independent ATPase Activity of Deinococcus radiodurans RecA Protein Is Activated by High Salt (고농도 염에 의한 Deinococcus radiodurans RecA 단백질의 DNA 비의존성 ATPase 역가의 활성화)

  • Kim, Jong-Il
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.313-318
    • /
    • 2010
  • Deinococcus radiodurans RecA protein, when bound to DNA, exhibits a DNA-dependent ATPase. In the absence of DNA, the rate of RecA protein-promoted ATP hydrolysis drops 1,000-fold under the physiological concentrations of salt. This DNA-independent activity can be stimulated to levels approximating those observed with DNA by adding high concentrations (approximately 1.6 M) of a wide variety of salts. This effect was characterized by varying salt concentration and comparing the effects of different ion types. The higher concentrations of salt stimulated the ATP hydrolysis by RecA protein in the absence of DNA. At 1.6 M chloride, the observed stimulation showed the following cation trend $K^+{\geq}Na^+$ > $NH_4^+$ and the following anion sequence was observed: $glutamate^- \; > \; C1^- \;> \; acetate^-\; > \;PO_4^-$ at 1.6 M $K^+$. The catalytic properties of the salt-stimulated ATP hydrolysis reaction was optimal between pH 7.0 and 8.0, which was similar to the double stran nded DNA-dependent ATPase activities of Deinococcus radiodurans RecA protein. In the absence of DNA the active species for ATP hydrolysis by RecA protein was shown to be an aggregate of three RecA protein molecules.

Superoxide Dismutase Profiles in the Mesophilic Deinococcus Species

  • Yun, Young-Sun;Lee, Young-Nam
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.232-235
    • /
    • 2001
  • Electrophoretic resolution of superoxide dismutase (SOD) from the highly UV-resistant bacteria, Deinococcus species revealed multiple forms of superoxide dismutases (SODs) in D. radiodurans, D. grandis, and D. proteolyticus, as judged from electrophoretic properties and metal cofactors. A single SOD occurred in both D. radiophilus and D. radiopugnans. Deinococcal SODs were either MnSOD, FeSOD or cambialistic Mn/FeSOD. The unique SOD profile of each mesophilic Deinococcus species, multiplicity and metal cofactors would be valuable in identifying Deinococcus species.

  • PDF