• Title/Summary/Keyword: Delaunay triangulation

Search Result 133, Processing Time 0.023 seconds

Distributed Kinetic Delaunay Triangulation

  • Yoo Taewon;Choi Sunghee;Lee Hyonik;Lee Jinwon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.964-966
    • /
    • 2005
  • This paper proposes a distributed algorithm to maintain the Delaunay triangulation of moving points. We assume that every point is a processor which can only communicate with the adjacent points connected by edges in the Delaunay triangulation. The topology changes of the Delaunay triangulation due to the movement of the points are updated automatically by local operations of the points without any centralized processor or global information.

  • PDF

Higher Order Elements by Delaunay Triangulation (드로네이기법에 의한 고차 유한요소 생성)

  • 송영준
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.141-154
    • /
    • 1996
  • Delaunay triangulation is a very powerful method of mesh generation for its versatility such as handling complex geometries, element density control, and local/global remeshing capability, The limit of generating simplex elements(3-node elements in 2-D) only is resolved by adding generation module of 6-node quadratic elements. Since proposed adjacency does not change from 3-node element mesh to 6-node mesh, generation module can utilize the original simplex element generator. Therefore, versatility of the Delaunay triangulation is preserved. A simple upsetting problem is employed to show the possibility of the algorithm.

  • PDF

Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks

  • Dechaumphai, Pramote;Phongthanapanich, Sutthisak;Bhandhubanyong, Paritud
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.563-578
    • /
    • 2003
  • Delaunay triangulation is combined with an adaptive finite element method for analysis of two-dimensional crack propagation problems. The content includes detailed descriptions of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around the crack tips and large elements in the other regions. Three examples for predicting the stress intensity factors of a center cracked plate, a compact tension specimen, a single edge cracked plate under mixed-mode loading, and an example for simulating crack growth behavior in a single edge cracked plate with holes, are used to evaluate the effectiveness of the procedure. These examples demonstrate that the proposed procedure can improve solution accuracy as well as reduce total number of unknowns and computational time.

Triangulation of Voronoi Faces of Sphere Voronoi Diagram using Delaunay Refinement Algorithm (딜러니 개선 알고리듬을 이용한 삼차원 구의 보로노이 곡면 삼각화)

  • Kim, Donguk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • Triangulation is one of the fundamental problems in computational geometry and computer graphics community, and it has huge application areas such as 3D printing, computer-aided engineering, surface reconstruction, surface visualization, and so on. The Delaunay refinement algorithm is a well-known method to generate quality triangular meshes when point cloud and/or constrained edges are given in two- or three-dimensional space. In this paper, we propose a simple but efficient algorithm to triangulate Voronoi surfaces of Voronoi diagram of spheres in 3-dimensional Euclidean space. The proposed algorithm is based on the Ruppert's Delaunay refinement algorithm, and we modified the algorithm to be applied to the triangulation of Voronoi surfaces in two ways. First, a new method to deciding the location of a newly added vertex on the surface in 3-dimensional space is proposed. Second, a new efficient but effective way of estimating approximation error between Voronoi surface and triangulation. Because the proposed algorithm generates a triangular mesh for Voronoi surfaces with guaranteed quality, users can control the level of quality of the resulting triangulation that their application problems require. We have implemented and tested the proposed algorithm for random non-intersecting spheres, and the experimental result shows the proposed algorithm produces quality triangulations on Voronoi surfaces satisfying the quality criterion.

A Dynamic Delaunay Triangulation in the L(L1) Metric (L(L1) 동적 디루니 삼각분할 방법)

  • Wee, Youngcheul;Kimn, Hajine;Seo, Sangku
    • Journal of the Korea Computer Graphics Society
    • /
    • v.6 no.4
    • /
    • pp.23-28
    • /
    • 2000
  • We introduce a new method for constructing a dynamic Delaunay triangulation for a set S of n sites in the plane under the $L_{\infty}(L_1)$ metric. We find that the quadrant neighbor graph is contained in the Delaunay triangluation and that at least one edge of each triangle in the Delaunay triangulation is contained in the quadrant neighbor graph. By using these observations and employing a range tree scheme, we present a method that dynamically maintains the $L_{\infty}(L_1)$ Delaunay triangulation under insertions and deletions in $O(log^2n)$ amortized time and O(log n) expected time.

  • PDF

Visualization of Affine Invariant Tetrahedrization (Slice-Based Method for Visualizing the Structure of Tetrahedrization) (어파인 불변성 사면체 분할법의 가시화 (절편 법을 이용한 사면체 구조의 가시화))

  • Lee, Kun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1894-1905
    • /
    • 1996
  • Delauuany triangulation which is the dual of Dirichlet tessellation is not affine invariant. In other words, the triangulation is dependent upon the choice of the coordinate axes used to represent the vertices. In the same reason, Delahanty tetrahedrization does not have an affine iveariant transformation property. In this paper, we present a new type of tetrahedrization of spacial points sets which is unaffected by translations, scalings, shearings and rotations. An affine invariant tetrahedrization is discussed as a means of affine invariant 2 -D triangulation extended to three-dimensional tetrahedrization. A new associate norm between two points in 3-D space is defined. The visualization of the structure of tetrahedrization can discriminate between Delaunay tetrahedrization and affine invariant tetrahedrization.

  • PDF

Adaptive Element-free Galerkin Procedures by Delaunay Triangulation (Delaunay 삼각화를 이용한 적응적 Element-free Galerkin 해석)

  • 이계희;정흥진;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.525-535
    • /
    • 2001
  • In this paper, a new adaptive analysis scheme for element-free Galerkin method(EFGM) is proposed. The novel point of this scheme is that the triangular cell structure based on the Delaunay triangulation is used in the numerical integration and the node adding/removing process. In adaptive analysis with this scheme, there is no need to divide the integration cell and the memory cell structure. For the adaptive analysis of crack propagation, the reconstruction of cell structure by adding and removing the nodes on integration cells based the estimated error should be carried out at every iteration step by the Delaunay triangulation technique. This feature provides more convenient user interface that is closer to the real mesh-free nature of EFGM. The analysis error is obtained basically by calculating the difference between the values of the projected stresses and the original EFG stresses. To evaluate the performance of proposed adaptive procedure, the crack propagation behavior is investigated for several examples.

  • PDF

An Efficient Robot Path Generation Using Delaunay Mesh (딜레노이 메시를 이용한 효율적인 로봇 경로 생성방법)

  • Noh, Sung-Woo;Ko, Nak-Yong;Kim, Kwang-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • This paper proposes a path planning method of a mobile robot in two-dimensional work space. The path planning method is based on a cell decomposition approach. To create a path which consists of a number of line segments, the Delaunay Triangulation algorithm is used. Using the cells produced by the Delaunay Triangulation algorithm, a mesh generation algorithm connects the starting position to the goal position. Dijkstra algorithm is used to find the shortest distance path. Greedy algorithm optimizes the path by deleting the path segments which detours without collision with obstacles.

Delaunay triangulation for efficient reduction of measured point data (측정데이터의 효율적 감소를 위한 De Iaunay 삼각형 분할의 적용)

  • 허성민;김호찬;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.53-56
    • /
    • 2001
  • Reverse engineering has been widely used for the shape reconstruction of an object without CAD data and it includes some steps such as scanning of a clay or wood model, and generating some manufacturing data in an STL file. A new approach to remove point data with Delaunay triangulation is introduced to deal with the size problems of STL file and the difficulties in the operation of RP process. This approach can be used to reduce a number of measuring data from laser scanner within a specified tolerance, thus it can avoid the time for handing point data during modeling process and the time for verifying and slicing STL model during RP process. Developed software enables the user to specify the criteria for the selection of group of triangles either by the angle between triangles or the percentage of triangles reduced, and thus RP models with accuracy will be helpful to automated process.

  • PDF

The Application of Delaunay Triangulation on RP (Delaunay 삼각형 분합법의 RP에의 응용)

  • 김대원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.129-134
    • /
    • 1998
  • STL which is used in Rapid Prototyping is composed of a lot of triangular facets. The number of triangles and the shapes of these triangles determine the quality of STL. Therefore, proper algorithm is necessary to enhance the quality of triangular patch. In this paper we used the Delaunay triangulation method to apply to following processes. 1) On processing for reducing sharp triangles which cause errors on intersection. 2) On processing for connecting two or more collinear edges. 3) On processing for deleting unnecessarily inserted points in coplanar polygon.

  • PDF