• 제목/요약/키워드: Depuration rate constant

검색결과 12건 처리시간 0.02초

단기간 생물농축계수의 측정에 있어서 실험어류의 종에 따른 차이 (Difference in Species of Test Fish on the Determination of Short-term Bioconcentration Factor)

  • 민경진;차춘근;전봉식;김근배
    • 한국환경보건학회지
    • /
    • 제24권1호
    • /
    • pp.24-31
    • /
    • 1998
  • This study was performed to investigate the difference in species of test fish on the determination of short-term bioconcentration factor in zebrafish(Brachydanio rerio), red sword tail(Xiphophorus hellieri) and goldfish(Carassius auratus). Experimental concentrations of carbamates were 0.05 and 0.10 ppm and chlorothalonil were 0.005 and 0.01 ppm for 3 and 5 days, respectively. This paper reports the measured BCF value on pesticides in various species of test fish, under steady state, and examined correlation between the BCF value and depuration rate constant or LC$_{50}$ or lipid content. Carbamates and chlorothalonil concentration in fish extract and BCF of carbamate and chlorothalonil were increased as incresing test concentration. Carbamates concentration in fish extract and BCF of carbamate were decreased as incresing test period, but chlorothalonil concentration in fish extract and BCF of chlorothalonil were increased as prolonging test period. Determined pesticide concentration in fish extract and BCF were highest in red sword tail, and followed by goldfish, and zebrafish. Determined depuration rate constant were highest in zebrafish, and followed by goldfish, and red sword tail. 96hr-LC$_{50}$ were highest in red sword tail, and followed by zebrafish, and goldfish. Lipid compositions were highest in red sword tail, and followed by goldfish, and zebrafish. Therefore, it is suggested that the difference of BCF between each pesticide due to those of lipid composition of fish and deputation rate constant, while LC$_{50}$ have no effect on BCF.

  • PDF

Carassius auratus(goldfish)를 이용한 Carbofuran의 단기간 생물농축계수의 측정 (Determination of Short-term Bioconcentration Factor on Carbofuran in Carassius auratus (goldfish))

  • 민경진;배영규;차춘근;박천만;강회양
    • 한국환경보건학회지
    • /
    • 제22권4호
    • /
    • pp.25-32
    • /
    • 1996
  • The Bioconcentration factor(BCF) is used as an important criterion in the risk assessment of environmental contaminants. Also it can be used as indicator of biomagnification of environmentally hazardous chemicals through food-chain as well as a tool for ranking the bioconcentration potential of the chemicals in the environment. This paper reports the measured BCF value on carbofuran in Carassius auratus(goldfish), under steady state, and examined corelation between the BCF value and the depuration rate constant. Carassius auratus(goldfish) was chosen as test organism and test periods were 1-day, 3-day and 5-day. Experimental concentrations were 0.05, 0.10 and 0.50 ppm. Carbofuran in fish tissue and in test water was extracted with n-hexane and acetonitril. GC-ECD was used to detect and quantitate carbofuran. The depuration rate of carbofuran from the whole body of goldfish is determined over the 24-h period after treatment. The obtained results were as follows: 1. It was possible to determine short term BCFs of carbofuran through relatively simple procedure in environmental concentrations. 2. $BCF_1$ of carbofuran in concentration of 0.05, 0.10 and 0.50 ppm were 1.66, 1.64 0.61, $BCF_3$ were 2.08, 2.14, 0.66 and $BCF_5$ were 2.21, 2.57, 0.86, respectively. 3. Carbofuran concentration in fish extract was increased as increasing test concentration and prolonging test period, but $BCF_s$ in concentration of 0.50 ppm was greately decreased. 4. Determined deputation rate constants of carbofuran in concentration of 0.05, 0.10, 0.50 ppm were 0.076, 0.082 and 0.089, respectively. 5. It is considered that great decrease of $BCF_s$ in concentration of 0.50 ppm is due to high water solubility and stability of carbofuran in testwater. 6. It is suggested that low BCF of carbofuran is due to its relatively high water solubility and depuration rate, compared to BPMC, carbaryl and chlorothalonil.

  • PDF

Brachydanio rerio(zebrafish)를 이용한 IBP, methidathion 및 piperophos의 생물농축성 (Bioconcentration of IBP, Methidathion and Piperophos in Brachydanio rerio(zebrafish))

  • 하영득;민경진;이승곤
    • 한국환경보건학회지
    • /
    • 제27권2호
    • /
    • pp.108-118
    • /
    • 2001
  • This study was performed to investigate the bioconcentration of IBP, methidathion and piperophos. The BCFs(bioconcentration factor), depuration rate constants for three pesticides in zebrafish(Brachydanio rerio) were measured by OECD guideline 305. The concentration of test pesicides were one-hundredth and one-thousandth concentration of 96-hrs L $C_{50}$ in accordance with OECD guideline 305. The results obtained are summarized as follows: The average BCF values of IBP were 5.31(n=4) and 7.30(n=4) at one-hundredth and one-thousandth concentration of 96-hrs L $C_{50}$ . The average BCF values of methidathion were 8.72(n=4) and 11.25(n=4), the average BCF values of piperophos were 34.30(n=4) and 42.60(n=4). Depuration rate constants of IBP were 0.09( $h^{-1}$ ) and 0.08( $h^{-1}$ ), half-life of IBP were 7.70 and 8.66 at each tested concentration. The concentrations of IBP in zebrafish at low and high concentrations rapidly decreased after 12(0.243$\mu\textrm{g}$/g) and 12 hours(0.040$\mu\textrm{g}$/g). Depuration rate constants of methidathion were 0.40( $h^{-1}$ ), half-life of methidathion were 1.73 at one-hunderdth and of 96-hrs L $C_{50}$ , repectively. The concentrations of methidathion in zebrafish at high concentrations rapidly decreased after 6 hours(0.18 $\mu\textrm{g}$/g). Depuration rate constant of low concentration was no measured because methidathion in zebrafish was depurated in 6 hours. Depuration rate constants of piperophos sere 0.15( $h^{-1}$ ) and 0.44( $h^{-1}$ ), half-life of piperophos were 4.62 and 1.58 at each tested concentration. The concentrations of piperophos in zebrafish at los and high concentrations rapidly decreased after 12(0.26$\mu\textrm{g}$/g) and 6 hours(0.015 $\mu\textrm{g}$/g). It was suggested that high BCF of piperophos was due to high Kow(octanol-water partition coefficient). The possibility of bioconcenration was not likely to be high because of its $K_{DEP}$(depuration rate constant) in the evniroment. It was suggested that low BCF of methidathion showed lowest Kow as well as the most rapid $K_{DEP}$. Therefore, the possibility of bioconcentration was not occured in the enviroment. It was suggested that the BCF dtermined for IBP was lower than that of other pesticides due to high Sw(water solubility), show $K_{DEP}$. Therefore, IBP revealed little bioconcentration effect on in aquatic ecosystem.ystem.

  • PDF

BPMC, Carbaryl 및 Chiorothalonil의 상호작용이 Carassius auratus(goldfish)를 이용한 단기간 생물농축계수의 측정에 미치는 영향 (Effect of Interaction of BPMC, Carbaryl and Chlorothalonii on short-term Bioconcentration Factor in Carassius auratus(goldfish))

  • 민경진;차춘근;전봉식;김근배
    • 한국환경보건학회지
    • /
    • 제23권2호
    • /
    • pp.72-82
    • /
    • 1997
  • This study was performed to investigate the effect of co-existence of BPMC, carbaryl and chlorothalonil on the short-term bioconcentration factor in Carassius auratus(goldfish). The fishes were exposed to the combined treatment of BPMC, carbaryl and chlorothalonil (0.05 ppm+0.05 ppm+0.005 ppm, 0.05 ppm+0.05 ppm+0.010 ppm, 0.05 ppm+0.10 ppm+0.005 ppm, 0.10 ppm+0.05 ppm+0.005 ppm, 0.10 ppm+0.10 ppm+0.005 ppm) for 3 and 5 days, respectively. BPMC, carbaryl and chlorothalonil in fish and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detect and quantitate BPMC, carbaryl and chlorothalonil. 3-day and 5-day bioconcentration factors(BCF$_3$ and BCF$_5$) of each pesticide were calculated from the quantitation results. The depuration rate of each pesticide-from the whole body of fish was determined over the 72-h period after combined treatment.The results were as follows: BCF$_3$ values of BPMC were 4.163, 4.011, 4.122, 4.750 and 4.842 when the concentration of BPMC+ carbaryl+chlorothalonil in combined treatment were 0.05 ppm+0.05 ppm+0.005 ppm, 0.05 ppm+0.05 ppm+0.010 ppm, 0.05 ppm+0.10 ppm+0.005 ppm, 0.10 ppm+0.05 ppm+0.005 ppm and 0.10 ppm+ 0.10 ppm+0.005 ppm. BCF$_5$ values of BPMC were 3.465, 3.270, 3.472, 3.162, 4.227 and 4.157, respectively, under the above conditions. While BCF$_3$ values of carbaryl were 4.583, 4.642, 4.571, 3. 637 and 3.529, respectively, and BCF$_5$ values of carbaryl were 3.932, 3.797, 3.843, 4.293 and 4.132, respectively, under the conditions. While BCF$_3$ values of chlorothalonil were 2.024, 3.532, 2.213, 2.157 and 2.271, respectively, and BCF$_5$ of chlorothalonil were 6.712, 7.013, 6.457, 6.694 and 6.597, respectively, under the conditions. Depuration rate constants of BPMC were 0.019, 0.018, 0.020, 0.022 and 0.021 when the concentration of BPMC+carbaryl+chlorothalonil in combined treatment were the same as above. And depuration rate constants of carbaryl were 0.030, 0.029, 0.030, 0.029 and 0.031, respectively, under the same condition of pesticide mixtures. While depuration rate constants of chlorothalonil were 0.004, 0.004, 0.003, 0.004 and 0.003, respectively, under the same condition. It was observed that no significant differences of BCFs and concentrations of the compounds in fish extracts, test water between combined treatment and single treatment. It was considered that no appreciable interaction at experimental concentrations was due to low concentrations, near environmental level, 0.005-0.1 ppm. Coexistence of BPMC, carbaryl and chlorothalonil had no effect on depuration rate of each pesticide and depuration rate of chlorothalonil was investigated 1/8 and 1/6 slower than those of carbaryl and BPMC in combined treatment. It is similar result in comparison with single treatment. Therefore, it is considered that the persistence of chlorothalonil in fish body would be higher than those of carbaryl and BPMC.

  • PDF

Brachydanio rerio와 Xiphophorus hellieri를 이용한 Dichlorvos, Methidathion 및 Phosalone의 단기간 생물농축계수의 측정 (Detemination of Short-term Bioconcentration Factor on Dichlorvos, Methidathion and Phosalone in Brachydanio rerio and Xiphophorus hellieri)

  • 민경진;전봉식;차춘근;김근배;조영주
    • 한국환경보건학회지
    • /
    • 제24권3호
    • /
    • pp.99-106
    • /
    • 1998
  • This study was performed to investigate the bioconcentration of dichlorvos, methidathion and phosalone in zebrafish (brachydanio rerio), red sword tail(Xiphophorus hellieri). The fishes were exposed to 0.05 ppm, 0.01 ppm, 0.50 ppm, one-hundredth concentration of 96-hrs LC$_{50}$ and one-thousandth concentration of 96-hrs LC$_{50}$ and test periods were 3, 5 and 8 days. The deputation rate of each pesticide from the whole body of fish was determined over the 24-hr period after treatment. Obtained results are summerized as follows: In the case of dichlorvos, dichlorvos concentration in zebrafish extract and BCF$_{s}$ of dichlorvos were increased as increasing test concentration. In the case of same experimental concentrations, dichlorvos concentration in zebrafish extract and BCF$_{s}$ of dichlorvos were decreased as proloning test periods, especially dropped after 5days. Dichlorvos concentration in red sword tail extract were increased as increasing test concentration, lyat BCF$_{s}$ in concentration of 0.05 ppm, 0.01 ppm and one-hundredth of 96-hrs LC$_{50}$ were decreased. Methidathion and phosalone concentration in zebrafish extract in zebrafish extract were increased as increasing test concentration, but there was little difference in BCF$_{s}$. In the case of same experimental concentrations, there were little differences in BCF$_{s}$ and concentration in zebrafish extract. In the case of red sword tail, it was impossible to calculate on BCF$_{s}$ data because test concentration was under the detecting limit on GC or test fish were die. Determined deputation rate conatant were highest on dichlorvos, and followed by methidathion, and phosalone. The results of determining depuration rate of these pesticides showed that the high BCF in fish might be due to the slow depuration rate in fish, it is thought to be responsible for vapor pressure, water solubility and partition coefficient. It is suggested that one-hundredth concentration of 96-hrs LC$_{50}$ will be proper test concentration because one-thousundth of LC$_{50}$ was under the detecting limit on GC. Dichlorvos, methidathion and phosalone, organophosphorous pesticides, were examined to their BCF$_{s}$ and depuration rates by means of fish test.

  • PDF

일부 농약의 생물농축계수의 측정 (Determination of Bioconcentration Factor in Some Pesticides)

  • 민경진;차춘근
    • 한국식품위생안전성학회지
    • /
    • 제14권2호
    • /
    • pp.146-152
    • /
    • 1999
  • The present study was performed to investigate the bioconcentration of BPMC, chlorothalonil, dichlorvos and methidathion. The BCFs(bioconcentration factors) and depuration rate constants for four pesticides in zebrafish(brachydanio rerio) were measured under semi-static conditions(OECD guideline 305-B) in a concentration of one-hundredth of the 96 hours LC50 of each pesticide at the equilibrium condition. The results obtained are summarized as follows : The BCFs of BPMC, chlorothalonil, dichlorvos and methidathion were 1.44$\pm$0.09, 2.223$\pm$0.063, 0.81$\pm$0.08 and 5.53$\pm$0.13, respectively. Depuration rate constants of BPMC, chlorothalonil, dichlorvos and methidathion were 0.028, 0.015, 0.220 and 0.152, respectively. The concentrations of BPMC, dichlorovs and methidathion in zebrafish reached an equilibrium in 3 days, and the equilibrium of chlorothalonil was reached after 14 days. Depuration rate of dichlorvos was the fastest followed by methidathion, BPMC and chlorothalonil. The lower BCF of BPMC was due to its relatively high KOW, slow KDEP, and low SW and VP, compared to chlorothalonil and methidathion. The BCF of chlorothalonil was much lower than that excepted on the basis of high KOW, slow KDEP, SW and VP. The reason is that the experimental concentration for chlorothalonil is 1/100~1/1000 lower than that of BPMC, dichlorvos and methidathion. The BCF of dichlorvos was lower than that of other pesticides due to its very rapid KDEP, very high VP and SW, and very low KOW. The BCF of methidathion was higher than that of other pesticides due to its very low VP and SW. Therefore, these data suggest that physicochemical properties of pesticides may be important in the bioconcentration.

  • PDF

카드뮴 장기노출 후 넙치, Paralichthys olivaceus의 기관에 따른 카드뮴의 배출 (Cadmium Elimination in Tissue of Olive Flounder, Paralichthys olivaceus after Long-Term Exposure)

  • 김성길;장석우;강주찬
    • 한국수산과학회지
    • /
    • 제36권1호
    • /
    • pp.44-48
    • /
    • 2003
  • 넙치 (P. olivaceus)를 카드뮴 아치사 농도인 5, 50, 100 ${\mu}g/L$의 구간에 30일간 노출시킨후 청장기간을 가져 아가미, 간, 신장, 창자 및 근육에서 축적된 카드뮴의 제거정도를 조사하였다. 아가미에서는 노출농도 50 ${\mu}g/L$ 이상에서는 배출 10일째부터 유의한 감소를 나타내었으며, 배출이 가장 빨랐던 기관은 창자로써 배출 10일째부터 노출농도 50, 100 ${\mu}g/L$에서 $50\%$ 이상의 제거율을 나타냈다. 간은 배출 10일째부터 유의한 감소를 나타냈으며, 노출 20일 이후에는 노출구간 50, 100 ${\mu}g/L$에서는 각각 $66.20\%$$86.22\%$의 제거율을 나타냈다. 신장에는 카드뮴 노출이후 각 구간에서 유의한 감소를 나타내지 않았으며, 근육은 다른 기관들과는 달리 카드뮴 노출 이후 배출실험에서도 지속적인 농도 증가가 나타냈다. 카드뮴 노출 30일 후 배출되는 20일 동안 가장 많이 배출되는 기관의 순서는 창자>간${\geq}$아가미>>신장의 순으로 나타났다. 아가미, 창자와 간은 배출 20일 동안 급격한 카드뮴의 제거가 나타났으며, 신장은 유의적인 배출이 이루어지지 않고 농도변화가 거의 없었다. 근육은 배출이 이루어지지 않고, 카드뮴이 없는 해수에서도 지속적으로 증가하는 경향을 나타내었다.

Brachydanio rerio와 Xiphophorus hellieri를 이용한 BPMC, Carbaryl 및 Carbofuran의 단기간 생물농축계수의 측정 (Determination of short-term bioconcentration Factor on BPMC, Carbaryl and Carbofuran in Brachydanio rerio and Xiphophorus hellieri)

  • 민경진;전봉식;차춘근;김근배;조영주;송진욱
    • 한국식품위생안전성학회지
    • /
    • 제13권3호
    • /
    • pp.213-220
    • /
    • 1998
  • Zebrafis(brachydanio rerio), red sword tail(Xiphophorus hellieri)을 이용하여 카르바메이트계 농약인 BPMC, carbaryl 및 carbofuran을 실험 농도 0.05, 0.01, 0.50 ppm 및 각 농약에 대해 측정한 96시간 $LC_{50}$ 농도의 1/100, 1/1000에서 단기간(3일, 5일, 8일) 생물농축계수(Bioconcentration factor (BCF))를 측정하였으며, 아울러 배설 속도 상수(depuration rate constant)를 구하여 다음과 같은 결과를 얻었다. BPMC와 carbaryl의 경우 sebrafish의 체내 농축정도와 BCF 값은 red sword tail보다 적었다. 실험농도가 증가할수록 어류 체내에서의농축 정도는 증가하였고, BCF값도 증가하였다. 실험 농도가 같은 경우, BPMC는 실험기간이 증가 할 수록 어류 체내에서의 농축정도와 BCF는 감소하였으며, 이것은 기간이 늘어나면서 체외로 배출되는 농약의 양이 증가하기 때문이라 생각된다. 그러나, carbaryl의 경우는 실험기간이 같은 경우, zebrafish의 0.50ppm에서는 BCF가, 농도가 높을수록 증가하는 경향과는 달리 BCF가 감소하였다. Carbofuran의 경우, 실험 전 기간동안 zebrafish 체내에서 carbofuran이 검출되지 않았으며, red sword tail의 96시간 LC50의 1/1000과 1/100 농도에서는 검출한계 미만으로 BCF값을 산출할 수 없었으며, 실험농도 0.05와 0.10ppm에서, 실험 기간에 따른 어류체내 농축정도와 BCF값은 BPMC, carbaryl과 같은 경향을 나타내고 있다. 아울러, 이들 농약의 배설속도 상수는 carbofuran, carbaryl, BPMCtns으로 높게 나타났다. Carbofuran의 어류 체내 농축정도와 BCF값이 carbaryl과 BPMC보다 상대적으로 낮은 이유는 carbofuran의 수용성과 배설속도 상수가 이들 농약에 비해 상대적으로 크기 때문이며, 이로 인해 실제 환경 중에서도 생물농축효과가 현저히 작을 것으로 예측된다.

  • PDF

Carbofuran과 Chiorothalonil의 공존이 Brachydanio rerio(zebrafish)를 이용한 단기간 생물농축계수의 측정에 미치는 영향 (Effect of Co-existence of Carbofuran and Chlorothalonil on the Short-term Bioconcentration Factor in Brachydanio rerio(zebrafish))

  • 민경진;차춘근
    • 한국환경보건학회지
    • /
    • 제23권2호
    • /
    • pp.64-71
    • /
    • 1997
  • This study was performed to investigate the effect of co-existence of carbofuran and chlorothalonil on the short-term bioconcentration factor in Brachydanio rerio(zebrafish). The fishes were exposed to the single and combined treatment of carbofuran and chlorothalonil for 1, 3 and 5 days. Experimental concentrations of carbofuran were 0.05 and 0.10 ppm under the single treatment. And those of chlorothalonil were 0.005 and 0.010 ppm. Experimental concentrations of the combined treatment of carbofuran and chlorothalonil were 0.05 ppm+0.005 ppm, 0.05 ppm+0.010 ppm, 0.10 ppm+0.005 ppm for 1, 3 and 5 days, respectively. Carbofuran and chlorothalonil in fish and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detect and quantitate carbofuran and chlorothalonil. 1-day, 3-day and 5-day bioconcentration factors(BCF$_1$, BCF$_3$ and BCF$_5$) of each pesticide were obtained from the quantitation results. The depuration rate of each pesticide was determined over the 24-h period after combined treatment. The results were as follows: Carbofuran did not bioaccumulate in zebrafish under the single and combined treatment for testing periods. BCF$_1$ values of chlorothalonil in concentration of 0.005 and 0.010 ppm under the single treatment were 0.508, 0.621, BCF$_3$ were 1.327, 1.511 and BCF$_5$ were 1.331, 1.597, respectively. BCF$_1$ values of chlorothalonil were 0.512, 0.520 and 0.619, respectively, when the concentration of carbofuran and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. BCF$_3$ values of chlorothalonil 1.341, 1.338 and 1.513, respectively, and BCF$_5$ values of chlorothalonil were 1.332, 1.327 and 1.521, respectively, under the above combined treatment. Depuration rate constants of chlorothalonil in concentration of 0.005 and 0.010 ppm under the single treatment were 0.011 and 0.012. Depuration rate constants of chlorothalonil were 0.011, 0.010 and 0.011, when the concentration of carbofuran and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. It was observed that no significant difference of carbofuran and chlorothalonil concentration in fish extracts, test water, BCFs and depuration rate constants of carbofuran and chlorothalonil between combined treatment and single treatment. It was considered that no appreciable interaction at experimental concentrations due to lower concentrations than LC$_{50}$. It is suggested that the difference of BCFs between carbofuran and chlorothalonil due to those of fat composition of fish and solubility of carbofuran and chlorothaionil.

  • PDF

Carbaryl과 Chlorothalonil의 공존이 Carassius auratus(goldfish)를 이용한 생물농축계수에 미치는 영향 (Effect of Co-existence of Carbaryl and Chlorothalonil on the Short-term Bioconcentration Factor in Carassius auratus(goldfish))

  • 민경진;김근배;차춘근;박천만;강회양
    • 한국환경보건학회지
    • /
    • 제22권4호
    • /
    • pp.16-24
    • /
    • 1996
  • This study was performed to investigate the effect of co-existence of carbaryl and chlorothalonil on the short-term bioconcentration factor in Carassius auratus(goldfish). The fishes were exposed to the combined treatment of carbaryl and chlorothalonil(0.05 ppm+0.005 ppm, 0.05 ppm+0.010 ppm, 0.10 ppm+0.005 ppm) for 1, 3 and 5 days, respectively. Carbaryl and chlorothalonil in fish and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detect and quantitate carbaryl and chlorothalonil. 1-day, 3-day and 5-day bioconcentration factors($BCF_1, BCF_3$ and $BCF_5$) of each pesticide were calculated from the quantitation results. The depuration rate of each pesticide from the whole body of fish was determined over the 72-h period after combined treatment. The results were as follows: $BCF_1$ values of carbaryl were 3.521, 3.802 and 3.587, respectively, when the concentration of carbaryl and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. BCF3 values of carbaryl were 4.825, 4.556 and 3.828, respectively, and $BCF_5$ values of carbaryl were 3.974, 3.921 and 4.186, respectively, under the conditions. While $BCF_1$ of chlorothalonil were 0.829, 0.829 and 1.540, respectively, under the same condition of pesticide concentrations $BCF_3$ of chlorothalonil were 2.040, 2.208 and 3.633, respectively, and $BCF_5$ of chlorothalonil were 6.222, 6.667 and 7.095, respectively, under the conditions. Depuration rate constants of carbaryl were 0.022, 0.022 and 0.152, respectively, when the concentration of carbaryl and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. While depuration rate constants of chlorothalonil were 0.004, 0.004 and 0.006, respectively, under the same condition of pesticide concentrations. It was observed that no significant differences of carbaryl and chlorothalonil concentration in fish extracts, test water and $BCF_s$ of carbaryl and chlorothalonil between combined treatment and single treatment. It was considered that no appreciable interaction at experimental concentrations was due to low concentrations, 0.005~0.1 ppm. Co-existence of carbaryl and chlorothalonil had no effect on excretion of each pesticide and depuration rate of chlorothalonil was investigated 1/8 slower than that of carbaryl in combined treatment. Therefore, it is considered that the persistence of chlorothalonil in fish body would be higher than that of carbaryl.

  • PDF