• Title/Summary/Keyword: Derailment

Search Result 260, Processing Time 0.04 seconds

Analysis of Collision-induced Derailments of a Wheel-set Model Using MBD and FEM Simulation (MBD와 FEM을 이용한 단일윤축 모델의 충돌 후 탈선거동의 해석)

  • Lee, Jun-Ho;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1868-1873
    • /
    • 2011
  • In this paper, a theoretical formulation of a simplified wheel-set model for collision-induced derailments was evaluated by numerical simulations for the wheel-climb derailment and wheel-lift derailment types. The derailment types were classified into the wheel-climb derailment and the wheel-lift derailment according to the friction force direction of the wheel-flange. The wheel-climb derailment type was classified into Climb-up, Climb/Roll-over, and Roll-over-C, and wheel-lift derailment type was classified into Slip-up, Slip/Roll-over and Roll-over-L. To verify the theoretical equations derived for the wheel-climb derailment and the wheel-lift derailment, dynamic simulations using RecurDyn of Functionbay and Ls-Dyna of LSTC were performed and compared for some examples. The derailment predictions of the suggested theoretical formulation were in good agreement with those of the numerical simulations. The direction of the frictional force between the wheel-flange and the rail can be well predicted using the suggested derailment formulation at a initial derailment.

  • PDF

Study of Influence of Wheel Unloading on Derailment Coefficient of Rolling Stock (철도차량의 윤중 감소가 탈선계수에 미치는 영향 연구)

  • Koo, Jeong Seo;Oh, Hyun Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.177-185
    • /
    • 2013
  • A new theoretical derailment coefficient model of wheel-climb derailment is proposed to consider the influence of wheel unloading. The derailment coefficient model is based on the theoretical derailment model of a wheelset that was developed to predict the derailment induced by train collisions. Presently, in domestic derailment regulations, a derailment coefficient of 0.8 is allowable using Nadal's formula, which is for a flange angle of $60^{\circ}$ and a friction coefficient of 0.3. However, theoretical studies focusing on different flange angles to justify the derailment coefficient of 0.8 have not been conducted. Therefore, this study theoretically explains a derailment coefficient of 0.8 using the proposed derailment coefficient model. Furthermore, wheel unloading of up to 50% is accepted without a clear basis. Accordingly, the correlation between a wheel unloading of 50% and a derailment coefficient of 0.8 is confirmed by using the proposed derailment coefficient model. Finally, the validity of the proposed derailment coefficient model is demonstrated through dynamic simulations.

Study on Mechanical Parameters of a Wheelset Influencing Derailment of Rolling Stock (철도차량탈선에 영향을 미치는 윤축의 기계적 인자에 관한 연구)

  • Oh, Hyun Sun;Koo, Jeong Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1207-1218
    • /
    • 2013
  • It is difficult to predict derailment with the existing derailment coefficient like Nadal's formula which is based on the contact forces between one wheel and rail. A new derailment coefficient model developed on a wheelset is able to make a better estimate about the climb derailment, slip derailment, roll over derailment, and mixed derailment types of these. Moreover, not only the mechanical factors considered in the existing derailment coefficients but also other various factors affecting derailment such as wheel unloading and loading, diameter of wheel, and locations of axle-box bearings can be covered with this new derailment coefficient model. That is, the derailment patterns which couldn't be solved with the existing formulas such as Nadal's and Weinstock's models can be analyzed with this wheelset derailment coefficient model because of considering various factors causing derailment. Finally, the validity of the new derailment coefficient model is verified using dynamic model simulations.

Cause and Counterplan of Wheel Climb Derailment at Low Speed on Curves (곡선부 저속주행시 타오르기 탈선의 원인과 대책)

  • Ham, Young-Sam;You, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1031-1035
    • /
    • 2007
  • When vehicles running, vertical force and lateral force act except load of vehicles to rail and wheel. This force happens by complex motion at running. If mark vertical force by P and lateral force by Q, derailment coefficient displays Q/P, most important indicator pointer of running safety judgment. If Q is grown than P from derailment coefficient, than arrived to derailment because wheel climb or jumps over rail. Wheel climb derailment among kind of derailment is when attack angle is +, wheel and rail strike and flange rides to rail. This derailment occurs much in curved line and occurs in low speed. In this study, occurred when running at low speed on curved line, analyze cause of derailment and presented the countermeasure plan.

  • PDF

The Sensitivity Analysis of Derailment in Suspension Elements of Rail Vehicle (철도차량 현수장치의 탈선에 대한 민감도 연구)

  • 심태웅;박찬경;김기환
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.566-573
    • /
    • 1999
  • This paper is the result of sensitivity analysis of derailment with respect to the selected suspension elements for the rail vehicle. Derailment phenominon has been explained by the derailment quotient. Thus, the sensitivity of derailment is suggested by a response surface model(RSM) which is a functional relationship between derailment quotient and characteristics of suspension elements. To summarize generation of RSM, we can introduce the procedure of sensitivity analysis as follows. First, to form a RSM, a experiment is performed by a dynamic analysis code, VAMPIRE according to a kind of the design of experiments(DOE). Second, RSM is constructed to a 1$\^$st/ order polynomial and then main effect fators are screened through the stepwise regression. Finally, we can see the sensitivity level through the RSM which only consists of the main effect factors and is expressed by the liner, interaction and quadratic effect terms.

  • PDF

A Study on the Parameters Effecting on the Derailment Factor of Running Train on the Curved Track (곡선부에서 탈선계수에 영향을 미치는 매개변수들에 대한 연구)

  • Song, Bong-Hwan;Yang, Shin-Chu;Kang, Yun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.348-356
    • /
    • 2004
  • In this paper, Analysis of parameters effecting on the derailment factor was conducted in oder to deduce technical requisites have to be reflected in design of Track and rolling-stocks because it is important to grasp the risk of derailment quantitatively. And then go far toward becoming practical study with that select two section of sharp curved track of actual train in service, incheon Metro Line 1 and make field research in condition of vehicles and track and analysis As a result of parameter study, the following conclusions were obtained. The radius of curve and Cant is in inverse proportion to the derailment factor, but as train operation velocity, standard deviation of alignment irregularity and the ratio lateral force : wheel load of the inside track increase, the derailment factor rise. In the investigation for the derailment safety of incheon Metro Line 1, the derailment factor was below 0.43 in both section R=200 and R=300, so that it proved safe compare with allowance limits 0.8, but it appeared that risk of the derailment in second transition curve is the highest among the entire curve.

  • PDF

Cause analysis of the electric train derailment occurred in turnout on a sharp curves. (급곡선 분기기에서 발생한 전동열차 탈선사고의 원인분석)

  • Lee, Seungwon;Woo, Kwanje;Jeong, Chanmook
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.411-416
    • /
    • 2018
  • It is generally not preferable to install a turnout on a sharp curves but it is not desirable for the safety of a train. However, in a mountainous area or a depot where a sufficient space can not be secured to secure a straight line. In this study, in order to analyze the cause of train derailment accident that occurred in the place where turnout is installed in a sharp curves, we performed derailment analysis using line data and accident vehicle data measured at the location where the accident occurred. This derailment coefficient maximum turnout at the start of the track and derailment curve analysis showed that even big enough to cause a derailment as 1.37 in size, which was found to be consistent with the actual site survey results derailment occurred.

A study on the parameters to ensure safety against derailment (탈선 안전성능 향상을 위한 매개변수에 관한 연구)

  • Hwang, Jeong-Taek;Lee, Hi-Sung;Mok, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.297-303
    • /
    • 2007
  • Derailment is likely to have a direct connection with human life and must be eliminated. A traveling safety evaluation method based mainly on derailment coefficient has already established. But this method is very difficult because Derailment is caused by multiple factors. To evaluate the derailment factor of running train that runs on the curved track, we make use of mechanism that wheel loads and lateral forces were affected by track and rolling stock parameter. In this paper, deal with a search on the parameter and derailment factor. According to results of computer simulation value of Q/P, running safety is connected with operation velocity, curve radius, cant, track irregularity, suspension stiffness and static wheel load ratio, SMRT train Line No. 5 Bogie is selected to do numerical study considering rolling stock and track condition.

  • PDF

A Study on New Measurement of Derailment Coefficient for Rolling Stocks (철도차량의 새로운 탈선계수 측정방법에 관한 연구)

  • Hong, Yong-Ki;You, Won-Hee;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.306-312
    • /
    • 2007
  • The running safety of rolling stock is assessed by derailment coefficient. It requires lots of preparatory time, expenditure and high measurement technique to measure derailment coefficient. If derailment coefficient could be measured when track or vehicle is maintained, safety will be improved. The measurement and assessment of running safety is necessary for safety especially for the vehicles newly developed and started service. Therefore measurement of derailment coefficient is most important thing to secure running safety. In this paper, we examined new assessment method which could estimate derailment coefficient by measuring vibration acceleration and displacement of vehicle operating at actual track irrespective of time and place. The new method could be used effectively as a mean confirming running safety.

  • PDF

An Assessment of Derailment Safety of Railway Vehicle depending on Curve Rail Condition (곡선부 선로 조건에 따른 차량의 탈선안전도평가)

  • Yoo, Hee-Sang;Park, Kwang-Soo;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.953-958
    • /
    • 2007
  • To assess the derailment safety of the Samaeul Train, We developed a fleet analysis model and carried out sensitivity analysis of the variables related to derailment factors with ADAMS/Rail computing analysis method. Depending on the variation of the running speed in curve section, derailment coefficient and wheel load reduction rate are high at right side wheels in slow running speed section and low at left side wheel in high running speed. According to decreasing the radius of curve, derailment coefficient and wheel load decreasing rate are increased. Derailment coefficient is proportional to transition curve length and wheel load decreasing rate is constant. Cant value rising causes wheel load deduction rate rising.

  • PDF